若雙曲線
x2
16
-
y2
20
=1上一點P到它的右焦點距離是9,那么點P到它的左焦點的距離是( 。
A、17
B、17或1
C、4
5
+9
D、以上都錯
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的a,b,c,判斷P位于右支上,再由雙曲線的定義,即可得到P到左焦點的距離.
解答: 解:雙曲線
x2
16
-
y2
20
=1的a=4,b=2
5
,c=
16+20
=6,
設(shè)左右焦點為M,N,則|PN|=9,
由c-a=2,c+a=10,2<9<10,
則P在雙曲線的右支上,
即有雙曲線的定義可得,|PM|-|PN|=2a=8,
即有|PM|=8+9=17.
故選A.
點評:本題考查雙曲線的定義、方程和性質(zhì),考查運算能力,確定點P位于右支上是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某用人單位招聘員工依次為材料審查、筆試、面試共三輪考核.規(guī)定:只能通過前一輪考核才能進入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試.小王三輪考試通過的概率分別為
1
3
3
4
,
3
5
,且各輪考核通過與否相互獨立.
(Ⅰ)求小王通過該招聘考試的概率;
(Ⅱ)若小王每通過第一輪考核,家長獎勵人民幣1200元;若小王每通過第二輪考核,家長再獎勵人民幣1000元;若小王每通過第三輪考核,家長再獎勵人民幣1400元,記小王得到的金額為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
2
-
y2
2
=1的實軸長為(  )
A、
2
B、2
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x+1)-x的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(Ⅱ)已知x2+y2=2,且|x|≠|(zhì)y|,求
1
(x+y)2
+
1
(x-y)2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在y軸上,虛軸的長為8,焦距為12的雙曲線的標(biāo)準(zhǔn)方程為(  )
A、
y2
20
-
x2
16
=1
B、
y2
16
-
x2
20
=1
C、
y2
16
-
x2
36
=1
D、
y2
36
-
x2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,3)
,
b
=(-3,4)
,則
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn,點(an,Sn)在直線y=2x-3n上.
(1)求證:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、命題“若a>b>0,則a2>b2”的逆命題是假命題
B、若函數(shù)f(x)=sinx,則函數(shù)f(x)為周期函數(shù)的逆命題是真命題
C、向量
a
,
b
的夾角為鈍角的充要條件是
a
b
<0
D、“x2>2”是“x2-3x+2≥0”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊答案