【題目】已知圓M與直線相切于點,圓心M在x軸上.
(1)求圓M的方程;
(2)過點M且不與x軸重合的直線與圓M相交于A,B兩點,O為坐標(biāo)原點,直線OA,OB分別與直線x=8相交于C,D兩點,記△OAB、△OCD的面積分別是S1、S2.求的取值范圍.
【答案】(1)(2)
【解析】
(1)由題可知,設(shè)圓的方程為,列出方程組,求得,,即可得到圓的方程;
(2)設(shè)直線的斜率為 ,則直線的方程為,聯(lián)立方程組,求得點A的坐標(biāo),同理得到點B的坐標(biāo),求得,得到所以,利用基本不等式,即可求解.
(1)由題可知,設(shè)圓的方程為,
,解得,,所以圓的方程為.
(2)由題意知,,
設(shè)直線的斜率為 ,則直線的方程為,
由,得,/p>
解得或,則點的坐標(biāo)為.
又直線的斜率為,同理可得點的坐標(biāo)為.
由題可知,,.
因此,
又,同理,
所以,當(dāng)且僅當(dāng)時取等號.
又,所以的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,,其中,則稱為的“生成數(shù)列”.
(1)若數(shù)列的“生成數(shù)列”是,求;
(2)若為偶數(shù),且的“生成數(shù)列”是,證明:的“生成數(shù)列”是;
(3)若為奇數(shù),且的“生成數(shù)列”是,的“生成數(shù)列”是,…,依次將數(shù)列,,,…的第項取出,構(gòu)成數(shù)列.
探究:數(shù)列是否為等比數(shù)列,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,若實數(shù)a滿足f(log2|a﹣1|)>f(﹣2),則a的取值范圍是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,其中為實數(shù),為正整數(shù).
(1)對任意實數(shù),證明數(shù)列不是等比數(shù)列;
(2)對于給定的實數(shù),試求數(shù)列的前項和;
(3)設(shè),是否存在實數(shù),使得對任意正整數(shù),都有成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率,且橢圓的短軸長為2.
(1)球橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線過右焦點,且它們的斜率乘積為,設(shè)分別與橢圓交于點和.
①求的值;
②設(shè)的中點,的中點為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若A、B、C、D是空間任意四點,則有;
②是、共線的充要條件;
③對空間任意一點P與不共線的三點A、B、C,若,(,y,z∈R),則P、A、B、C四點共面.
其中不正確命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com