在空間四邊形ABCD中,E、F、G、H分別是邊AB、BC、CDDA的中點(diǎn),得到四邊形EFGH

(1)四邊形EFGH是________;

(2)當(dāng)對(duì)角線ACBD時(shí),四邊形EFGH是________;

(3)當(dāng)對(duì)角線滿足條件________時(shí),四邊形EFGH是矩形;

(4)當(dāng)對(duì)角線ACBD滿足條件________時(shí),四邊形EFGH是正方形.

答案:
解析:

  解析:(1)由三角形中位線定理可知EFACHGAC,于是EFHG,故四邊形EFGH為平行四邊形;

  (2)當(dāng)ACBD時(shí),由EFACEHBD,得EFEH,即平行四邊形EFGH的鄰邊相等,故平行四邊形EFGH為菱形;

  (3)要使平行四邊形EFGH為矩形,需且只須一個(gè)角是直角.如需EFFG,則ACBD;

  (4)要使平行四邊形EFGH為正方形,需且只須ACBD,且ACBD;


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點(diǎn)E,F(xiàn),G,H,若EH、FG所在直線相交于點(diǎn)P,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡(jiǎn)后的結(jié)果為(  )
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點(diǎn).
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問(wèn)在線段BC上是否存在點(diǎn)F,使GF∥平面ADE?若存在,請(qǐng)指出點(diǎn)F在BC上的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為( 。
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案