2sin5°-cos25°
sin25°
的值是
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用兩角和公式使sin5°轉(zhuǎn)化為sin(30°-25°),利用兩角和公式展開后,化簡(jiǎn)整理求得答案.
解答: 解:
2sin5°-cos25°
sin25°
=
2(sin30°-25°)-cos25°
sin25°
=
cos25°-
3
sin25°-cos25°
sin25°
=-
3

故答案為:-
3
點(diǎn)評(píng):本題主要考查了兩角和公式的化簡(jiǎn)求值,考查了學(xué)生分析問題和綜合運(yùn)用基礎(chǔ)知識(shí)的能力,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(2
7
9
0+(0.1)-1+lg
1
50
-lg2+(
1
7
-1+ log75
(2)已知方程sin(α-3π)=2cos(α-4π),求
sin(π-α)+5cos(2π-α)
2sin(
2
-α)-sin(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x-2=
x-a
(a∈R)的實(shí)數(shù)解的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
sin2x-cos2x
取得最大值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x,
(1)求函數(shù)f(x)解析式并畫出函數(shù)圖象;
(2)請(qǐng)結(jié)合圖象直接寫出不等式xf(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在其定義域上為奇函數(shù)的是( 。
A、y=ex+e-x
B、y=-
x
C、y=tan|x|
D、y=ln
1+x
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1)求證:平面AB1C1⊥平面AC1
(2)若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;
(3)若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品銷售量y(件)與銷售價(jià)格x(元/件)回歸方程為
y
=-10x+200,當(dāng)銷售價(jià)格為12.5元/件時(shí),預(yù)測(cè)該商品的銷售量大約為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x2+ax-a+1),其中a是常數(shù).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在定義域內(nèi)是單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案