如圖,△OBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P為線段BC的中點(diǎn),P為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)證明
(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.
【答案】分析:(Ⅰ)由題意可知,由此可推導(dǎo)出an=a1=2,n∈N*
(Ⅱ)將等式兩邊除以2,得,由此可知
(Ⅲ)由=,知{bn}是公比為的等比數(shù)列.
解答:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552781364/SYS201310232142485527813021_DA/8.png">,
所以a1=a2=a3=2,又由題意可知

=
=
∴{an}為常數(shù)列
∴an=a1=2,n∈N*
(Ⅱ)將等式兩邊除以2,得,
又∵

(Ⅲ)∵
=
=
又∵,
∴{bn}是公比為的等比數(shù)列.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和綜合運(yùn)用,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△OBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P為線段BC的中點(diǎn),P為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=
1
2
yn+yn+1+yn+2.

(Ⅰ)求a1,a2,a3及an;
(Ⅱ)證明yn+4=1-
yn
4
,n∈N*

(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖,ΔOBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2,設(shè)P為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),Pn的坐標(biāo)為(xn,yn), 

)求;

)證明

 (Ⅲ)若記證明是等比數(shù)列.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△OBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P為線段BC的中點(diǎn),P為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),數(shù)學(xué)公式
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)證明數(shù)學(xué)公式;
(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△OBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P為線段BC的中點(diǎn),P為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=
1
2
yn+yn+1+yn+2.

(Ⅰ)求a1,a2,a3及an;
(Ⅱ)證明yn+4=1-
yn
4
,n∈N*
;
(Ⅲ)若記bn=y4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案