下表是某單位在2013年1—5月份用水量(單位:百噸)的一組數(shù)據(jù):

月份
1
2
3
4
5
用水量
4 5
4
3
2 5
1 8
 
(Ⅰ)若由線性回歸方程得到的預(yù)測(cè)數(shù)據(jù)與實(shí)際檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0 05,視為“預(yù)測(cè)可靠”,通過(guò)公式得,那么由該單位前4個(gè)月的數(shù)據(jù)中所得到的線性回歸方程預(yù)測(cè)5月份的用水量是否可靠?說(shuō)明理由;
(Ⅱ)從這5個(gè)月中任取2個(gè)月的用水量,求所取2個(gè)月的用水量之和小于7(單位:百噸)的概率
參考公式:回歸直線方程是:,

①“預(yù)測(cè)可靠” ② 

解析試題分析:(Ⅰ)首先計(jì)算 由于已知則 通過(guò)計(jì)算出 ,從而求出回歸方程,再比較回歸方程的值與實(shí)際值的差的絕對(duì)值即可  (Ⅱ)列舉法:把所有可能與符合條件的一一列舉即可求概率
試題解析:(Ⅰ)由數(shù)據(jù),得,且
, 所以關(guān)于的線性回歸方程為 
當(dāng)時(shí),得估計(jì)值, 而;
所以,所得到的回歸方程是“預(yù)測(cè)可靠”的         6分
(Ⅱ)從這5個(gè)月中任取2個(gè)月,包含的基本事件有以下10個(gè):

其中所取2個(gè)月的用水量之和小于7(百噸)的基本事件有以下6個(gè):

故所求概率         12分
考點(diǎn):1 統(tǒng)計(jì);2 回歸直線方程;3 回歸分析;4 列舉法求概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(Ⅰ)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(Ⅱ)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為預(yù)防H7N9病毒爆發(fā),某生物技術(shù)公司研制出一種H7N9病毒疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司選定2000個(gè)樣本分成三組,測(cè)試結(jié)果如下表:

分組
A組
B組
C組
疫苗有效
673


疫苗無(wú)效
77
90

已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,應(yīng)在C組抽取樣本多少個(gè)?
(2)已知求通過(guò)測(cè)試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?6分,用表示編號(hào)為n(n=1,2,3, 、6)的同學(xué)所得成績(jī),且前5位同學(xué)的成績(jī)?nèi)缦拢?br />
(1)求第6位同學(xué)的成績(jī)及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;
(2)從6位同學(xué)中隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間(70,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
某學(xué)校高二年級(jí)共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.
(1)完成下面的列聯(lián)表;

 
不喜歡運(yùn)動(dòng)
喜歡運(yùn)動(dòng)
合計(jì)
女生
50
 
 
男生
 
 
 
合計(jì)
 
100
200
(2)在喜歡運(yùn)動(dòng)的女生中調(diào)查她們的運(yùn)動(dòng)時(shí)間, 發(fā)現(xiàn)她們的運(yùn)動(dòng)時(shí)間介于30分鐘到90分鐘之間,如圖是測(cè)量結(jié)果的頻率分布直方圖,若從區(qū)間段的所有女生中隨機(jī)抽取兩名女生,求她們的運(yùn)動(dòng)時(shí)間在同一區(qū)間段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校高三4班有50名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生30人,女生20人.為了了解其投籃成績(jī),甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績(jī)大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

編號(hào)
性別
投籃成績(jī)
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的樣本數(shù)據(jù)
編號(hào)
性別
投籃成績(jī)
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.
(Ⅱ)請(qǐng)你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績(jī)和性別有關(guān)?
 
優(yōu)秀
非優(yōu)秀
合計(jì)

 
 
 

 
 
 
合計(jì)
 
 
10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說(shuō)明理由.
下面的臨界值表供參考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
 
 
乙班
 
30
 
    合計(jì)
 
 
110
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國(guó)家標(biāo)準(zhǔn)GB3095-2012, PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取12天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如莖葉圖所示(十位為莖,個(gè)位為葉):

(I)求空氣質(zhì)量為超標(biāo)的數(shù)據(jù)的平均數(shù)與方差;
(II)從空氣質(zhì)量為二級(jí)的數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)的和小于100的概率;
(III)以這12天的PM2.5日均值來(lái)估計(jì)2012年的空氣質(zhì)量情況,估計(jì)2012年(366天)大約有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x
2
4
5
6
8
y
30
40
60
50
70
其中
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)試預(yù)測(cè)廣告支出為10百萬(wàn)元時(shí),銷售額多大?

查看答案和解析>>

同步練習(xí)冊(cè)答案