7.為得到函數(shù)y=-sin2x的圖象,可將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{3}$個單位D.向右平移$\frac{2π}{3}$個單位

分析 利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin(2x-$\frac{π}{3}$)=-sin(2x-$\frac{π}{3}$+π)=-sin(2x+$\frac{2π}{3}$)的圖象向右平移$\frac{π}{3}$個單位,
可得函數(shù)y=-sin[2(x-$\frac{π}{3}$)+$\frac{2π}{3}$]=-sin2x的圖象,
故選:C.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$個單位長度后,所得曲線的一部分如圖所示,則ω,φ的值分別為( 。
A.1,$\frac{π}{6}$B.1,$-\frac{π}{6}$C.2,$\frac{π}{3}$D.2,$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{1}{4}$x2+mx-$\frac{3}{4}$,已知不論α,β為何實數(shù)時,恒有f(sinα)≤0且f(2+cosβ)≥0,對于正項數(shù)列{an},其前n項和Sn=f(an)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若$\sqrt{_{n}}$=$\frac{1}{{a}_{n}+1}$,n∈N+,且數(shù)列{bn}的前n項和為Tn,試比較Tn與$\frac{1}{6}$的大小并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x=k+$\frac{1}{2}$,k∈Z},集合B={x|x=2k+$\frac{3}{2}$,k∈Z},則( 。
A.A=BB.A∩B=∅C.A⊆BD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\sqrt{2sinx+1}$的定義域是{x|$-\frac{π}{6}+2kπ≤x≤\frac{7π}{6}+2kπ,k∈Z$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)的定義域為R,且f(1-x)=f(1+x),若f(-1)+f(3)=12,則f(3)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程ex-x-6=0的一個根所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x∈Z|-1≤x<3},B={1,2,3},則A∩B為( 。
A.{-1,0,1,2}B.{1,2,3}C.{1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x+1\\ f(x-3)\end{array}$$\begin{array}{l},x≤0\\,x>0\end{array}$,則f(2017)等于(  )
A.-1B.1C.-3D.3

查看答案和解析>>

同步練習(xí)冊答案