【題目】下列結(jié)論中,正確的有( )
①不存在實(shí)數(shù)k,使得方程xlnx﹣ x2+k=0有兩個(gè)不等實(shí)根;
②已知△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且a2+b2=2c2 , 則角C的最大值為 ;
③函數(shù)y= ln 與y=lntan 是同一函數(shù);
④在橢圓 + =1(a>b>0),左右頂點(diǎn)分別為A,B,若P為橢圓上任意一點(diǎn)(不同于A,B),則直線PA與直線PB斜率之積為定值.
A.①④
B.①③
C.①②
D.②④

【答案】A
【解析】解:對(duì)于①,函數(shù)f(x)=xlnx﹣ x2在定義域內(nèi)單調(diào),不存在實(shí)數(shù)k,使得方程xlnx﹣ x2+k=0有兩個(gè)不等實(shí)根,正確;
對(duì)于②,∵a2+b2=2c2 , ∴a2+b2=2c2≥2ab,cosC= ,則角C的最大值為 ,故錯(cuò);
對(duì)于③,函數(shù)y= ln 與y=lntan 的定義域不同,不是同一函數(shù),故錯(cuò);
對(duì)于④,設(shè)A(﹣a,0),B(a,0),P(m,n),則b2m2+a2n2=a2b2a2n2=b2(a2﹣m2直線PA與直線PB斜率之積為 (定值),故正確.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ +alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)f′(x)的圖象為曲線C,曲線C上的不同兩點(diǎn)A(x1 , y1)、B(x2 , y2)所在直線的斜率為k,求證:當(dāng)a≤4時(shí),|k|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機(jī)對(duì)使用微信的60人進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)統(tǒng)計(jì)表,每天使用微信時(shí)間在兩小時(shí)以上的人被定義為“微信達(dá)人”,不超過2兩小時(shí)的人被定義為“非微信達(dá)人”,己知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
(1)確定x,y,p,q的值,并補(bǔ)全須率分布直方圖;
(2)為進(jìn)一步了解使用微信對(duì)自己的日不工作和生活是否有影響,從“微信達(dá)人”和“非微信達(dá)人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進(jìn)行問卷調(diào)查,設(shè)選取的3人中“微信達(dá)人”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

使用微信時(shí)間(單位:小時(shí))

頻數(shù)

頻率

(0,0.5]

3

0.05

(0.5,1]

x

p

(1,1.5]

9

0.15

(1.5,2]

15

0.25

(2,2.5]

18

0.30

(2.5,3]

y

q

合計(jì)

60

1.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斐波拉契數(shù)列0,1,1,2,3,5,8…是數(shù)學(xué)史上一個(gè)著名的數(shù)列,定義如下:F(0)=0,F(xiàn)(1)=1,F(xiàn)(n)=F(n﹣1)+F(n﹣2)(n≥2,n∈N).某同學(xué)設(shè)計(jì)了一個(gè)求解斐波拉契數(shù)列前15項(xiàng)和的程序框圖,那么在空白矩形和判斷框內(nèi)應(yīng)分別填入的詞句是( )

A.c=a,i≤14
B.b=c,i≤14
C.c=a,i≤15
D.b=c,i≤15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知矩形ABCD中, ,點(diǎn)E是邊BC上的點(diǎn),且 ,DE與AC相交于點(diǎn)H.現(xiàn)將△ACD沿AC折起,如圖2,點(diǎn)D的位置記為D',此時(shí)
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H﹣D'E﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)P(2, ),離心率e= ,直線l的漸近線為x=4.
(1)求橢圓C的方程;
(2)經(jīng)過橢圓右焦點(diǎn)D的任一直線(不經(jīng)過點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P是雙曲線在第一象限內(nèi)的點(diǎn),直線PO,PF2分別交雙曲線C的左、右支于另一點(diǎn)M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌的汽車4S店,對(duì)最近100例分期付款購(gòu)車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示,已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌的汽車.若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

a

b


(1)若以表中計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車的顧客(數(shù)量較大)中隨機(jī)抽取3位顧客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分層抽樣的方式從這100位顧客中抽出5人,再?gòu)某槌龅?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量η,求η的分布列及數(shù)學(xué)期望E(η).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,0),若點(diǎn)B是曲線y=f(x)上的點(diǎn),且線段AB的中點(diǎn)在曲線y=g(x)上,則稱點(diǎn)B是函數(shù)y=f(x)關(guān)于函數(shù)g(x)的一個(gè)“關(guān)聯(lián)點(diǎn)”,已知f(x)=|log2x|,g(x)=( x , 則函數(shù)f(x)關(guān)于函數(shù)g(x)的“關(guān)聯(lián)點(diǎn)”的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案