關(guān)于函數(shù)f(x)=lg
xx2+1
,有下列結(jié)論:
①函數(shù)f(x)的定義域是(0,+∞);
②函數(shù)f(x)是奇函數(shù);
③函數(shù)f(x)的最小值為-lg2;
④當(dāng)0<x<1時,函數(shù)f(x)是增函數(shù);當(dāng)x>1時,函數(shù)f(x)是減函數(shù).
其中正確結(jié)論的序號是
①④
①④
.(寫出所有你認(rèn)為正確的結(jié)論的序號)
分析:①根據(jù)對數(shù)函數(shù)的真數(shù)大于0,建立關(guān)系式解之驗證定義域即可;②函數(shù)f(x)是奇函數(shù),利用奇函數(shù)的定義進(jìn)行判斷;③函數(shù)f(x)的最小值為-lg2,利用基本不等式與對數(shù)的運(yùn)算性質(zhì)求出最值;④求出導(dǎo)數(shù),解出單調(diào)區(qū)間,驗證即可.
解答:解:①函數(shù)f(x)的定義域是(0,+∞),令
x
x2+1
>0,解得x>0,故定義域是(0,+∞),命題正確;
②函數(shù)f(x)是奇函數(shù),由①知,定義域不關(guān)于原點對稱,故不是奇函數(shù),命題不正確;
③函數(shù)f(x)的最小值為-lg2,不正確,因為f(x)=lg
x
x2+1
=lg
1
x+
1
x
≤lg
1
2
=-lg2
,最大值是-lg2,故命題不正確;
④當(dāng)0<x<1時,函數(shù)f(x)是增函數(shù);當(dāng)x>1時,函數(shù)f(x)是減函數(shù),命題正確,因為f′(x)=lg
1-x2
(x2+1)2
,令導(dǎo)數(shù)大于0,可解得0<x<1,令導(dǎo)數(shù)大于0,得x>1,故命題正確.
綜上,①④正確
故答案為:①④
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性與特殊點解題的關(guān)鍵是熟練掌握對數(shù)的性質(zhì),同時考查了推理論證的能力以及計算論證的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
(1)一定存在直線l,使函數(shù)f(x)=lgx+lg
12
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線l對稱;
(2)在復(fù)數(shù)范圍內(nèi),a+bi=0?a=0,b=0
(3)已知數(shù)列an的前n項和為Sn=1-(-1)n,n∈N*,則數(shù)列an一定是等比數(shù)列;
(4)過拋物線y2=2px(p>0)上的任意一點M(x°,y°)的切線方程一定可以表示為y0y=p(x+x0).
則正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)
的圖象為L,下列說法不正確的是( 。
A、圖象L關(guān)于直線x=
6
對稱
B、圖象L關(guān)于點(
12
,0)
對稱
C、函數(shù)f(x)在(-
π
6
π
3
)
上單調(diào)遞增
D、將L先向左平移
π
12
個單位,再將所有點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到y(tǒng)=sinx的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①若f′(x0)=0,則函數(shù)y=f(x)在x=x0處取得極值;
②若m≥-1,則函數(shù)f(x)=log
1
2
(x2-2x-m)
的值域為R;
③“a=1”是“函數(shù)f(x)=
a-ex
1+aex
在定義域上是奇函數(shù)”的充分不必要條件.
④函數(shù)y=f(1+x)的圖象與函數(shù)y=f(l-x)的圖象關(guān)于y軸對稱;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要條件;
其中正確命題的個數(shù)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的為
①③④
①③④

①函數(shù)y=f(x)與直線x=l的交點個數(shù)為0或l;
②a∈(
1
4
,+∞)時,函數(shù)y=lg(x2+x+a)的值域為R;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④若函數(shù)f(x)=ax,則?x1,?x2∈R,都有f(
x1+x2
2
)<
f(x1)+f(x2
2
;
⑤若函數(shù)f(x)=log
2
x
,則?x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
(1)一定存在直線l使函數(shù)f(x)=lgx+lg
1
2
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線l對稱
(2)不等式:arcsinx≤arccosx的解集為[
2
2
,1]

(3)已知數(shù)列{an}的前n項和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過拋物線y2=2px(p>0)上的任意一點M(x°,y°)的切線方程一定可以表示為y0y=p(x+x0).
則正確命題的序號為
(3)(4)
(3)(4)

查看答案和解析>>

同步練習(xí)冊答案