某工廠修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米.
(1)求底面積,并用含x的表達式表示池壁面積;
(2)怎樣設計水池能使總造價最低?最低造價是多少?

(1) s=1600,
(2) x="40," 最低造價268800

解析試題分析:(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.可得底面積為1600,池壁面積;s=(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米,則可知總造價s=,x=40時則.故可知當x=40時,則有可使得總造價最低。最低造價師268800元.
考點:不等式求解最值
點評:主要是考查了不等式求解最值的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
⑴ 求不等式的解集;
⑵ 如果關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)),
(1)求函數(shù)的單調區(qū)間,并確定其零點個數(shù);
(2)若在其定義域內單調遞增,求的取值范圍;
(3)證明不等式 ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車速度為0;當車流密度不超過20輛/千米時,車流速度為60千米,/小時,研究表明:當時,車流速度v是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)設,證明:對任意,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的二次項系數(shù)為,滿足不等式的解集為(1,3),且方程有兩個相等的實根,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某水域一艘裝載濃硫酸的貨船發(fā)生側翻,導致濃硫酸泄漏,對河水造成了污染.為減少對環(huán)境的影響,環(huán)保部門迅速反應,及時向污染河道投入固體堿,個單位的固體堿在水中逐漸溶化,水中的堿濃度與時間(小時)的關系可近似地表示為:,只有當污染河道水中堿的濃度不低于時,才能對污染產(chǎn)生有效的抑制作用.
(Ⅰ) 如果只投放1個單位的固體堿,則能夠維持有效的抑制作用的時間有多長?
(Ⅱ) 第一次投放1單位固體堿后,當污染河道水中的堿濃度減少到時,馬上再投放1個單位的固體堿,設第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.(此時水中堿濃度為兩次投放的濃度的累加)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)行業(yè)協(xié)會預測:某公司以每噸10萬元的價格銷售某種化工產(chǎn)品,可售出該產(chǎn)品1000 噸,若將該產(chǎn)品每噸的價格上漲%,則銷售量將減少%,且該化工產(chǎn)品每噸的價格上漲幅度不超過%,其中為正常數(shù) 
(1)當時,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當50<x≤200時,車流速度v與車流密度x滿足,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.
(Ⅰ) 當0<x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ) 當車流密度x為多大時,車流量(單位時間內通過橋上觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到個位,參考數(shù)據(jù)

查看答案和解析>>

同步練習冊答案