某中學在運動會期間舉行定點投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設每次投籃投中與否是相互獨立的,已知小明每次投籃投中的概率都是.
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.
(1);(2)ξ 0 2 4 6 8 P
E()=.
解析試題分析:(1)由于每次投籃投中與否是相互獨立的,且知小明每次投籃投中的概率都是,所以小明在投籃過程中直到第三次才投中則說明他第一次和第二次均未投中,且第三次投中,故由相互獨立事件同時發(fā)生的概率積公式可求小明在投籃過程中直到第三次才投中的概率;(2)首先由已知確定ξ的所有可能取值應為:0、2、4、6、8,由于每次投籃投中與否是相互獨立的,且小明每次投籃投中的概率相等都是,所以小明在4次投籃后的總得分服從參數(shù)為4和的二項分布,從而由公式得到的分布列,再由數(shù)學期望公式就可算出的值.
試題解析:(1)設小明在第i次投籃投中為事件Ai(i=1、2、3、4),由已知有,且事件A1,A2,A3,A4兩兩相互獨立,則小明第三次投籃時首次投中的概率為:.
(2)由已知得ξ的所有可能取值為0、2、4、6、8,則,所以有:
,,,,
ξ的分布列為 ξ 0 2 4 6 8 P
∴
考點:1.相互獨立事件;2.離散型隨機變量分布列;3.期望與方差.
科目:高中數(shù)學 來源: 題型:解答題
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球, 乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩人玩一種游戲;在裝有質(zhì)地、大小完全相同,編號分別為1,2,3,4,5,6六個球的口袋中,甲先模出一個球,記下編號,放回后乙再模一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(1)求甲贏且編號和為8的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個口袋中裝有大小形狀完全相同的紅色球個、黃色球個、藍色球個.現(xiàn)進行從口袋中摸球的游戲:摸到紅球得分、摸到黃球得分、摸到藍球得分.若從這個口袋中隨機地摸出個球,恰有一個是黃色球的概率是.
⑴求的值;⑵從口袋中隨機摸出個球,設表示所摸球的得分之和,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在某大學自主招生考試中,所有選報II類志向的考生全部參加了“數(shù)學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級. 某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人.
(1)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(2)若等級A,B,C,D,E分別對應5分,4分,3分,2分,1分.
(i)求該考場考生“數(shù)學與邏輯”科目的平均分;
(ii)若該考場共有10人得分大于7分,其中有2人10分,2人9分, 6人8分. 從這10中隨機抽取兩人,求兩人成績之和大于等于18的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
小王參加一次比賽,比賽共設三關,第一、二關各有兩個必答題,如果每關兩個問題都答對,可進入下一關,第三關有三個問題,只要答對其中兩個問題,則闖關成功.每過一關可一次性獲得價值分別為1000元,3000元,6000元的獎品(不重復得獎),小王對三關中每個問題回答正確的概率依次為,,,且每個問題回答正確與否相互獨立.
(1)求小王過第一關但未過第二關的概率;
(2)用X表示小王所獲得獎品的價值,寫出X的概率分布列,并求X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3題,每人答對其中2題就停止答題,即闖關成功.已知在6道被選題中,甲能答對其中的4道題,乙答對每道題的概率都是.
(1)求甲、乙至少有一人闖關成功的概率;
(2)設甲答對題目的個數(shù)為ξ,求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
為了測算如圖陰影部分的面積,作一個邊長為6的正方形將其包含在內(nèi),并向正
方形內(nèi)隨機投擲800個點.已知恰有200個點落在陰影部分內(nèi),據(jù)此,可估計陰影部分的面
積是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com