某種產(chǎn)品的次品率為0.01,如果從一批產(chǎn)品中任意抽取4個(gè),求沒(méi)有次品,有1個(gè)次品、有2個(gè)次品、有3個(gè)次品及4個(gè)次品的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:直接根據(jù)相互獨(dú)立事件的概率公式解之即可;
解答: 解:沒(méi)有次品的概率為:C40×0.994=0.994,
有1個(gè)次品概率為:C41×0.993×0.01=3.8812×10-2
有2個(gè)次品概率為:C42×0.992×0.012=5.8806×10-4,
有3個(gè)次品概率為:C43×0.99×0.013=3.96×10-6,
有4個(gè)次品概率為:C44×0.990×0.014=10-8
點(diǎn)評(píng):考查了相互獨(dú)立事件的概率,計(jì)算時(shí)需細(xì)心,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x(x∈R).
(1)求g(x)的解析式;
(2)判斷g(x)在[0,1]上的單調(diào)性并用定義證明;
(3)設(shè)M={m|方程g(t)-m=0在[-2,2]上有兩個(gè)不同的解},求集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從8名教師中選派4名同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1名教師),其中甲和乙不能都去,甲和丙只能都去或都不去,則不同的選派方案共有(  )
A、150種B、300種
C、600種D、900種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(0,sin
x
2
),
b
=(1,2cos
x
2
),函數(shù)f(x)=
3
2
a
b
,g(x)=
a
2+
b
2-
7
2
,則f(x)的圖象可由g(x)的圖象經(jīng)過(guò)怎樣的變換得到( 。
A、向左平移
π
4
個(gè)單位長(zhǎng)度
B、向右平移
π
4
個(gè)單位長(zhǎng)度
C、向左平移
π
2
個(gè)單位長(zhǎng)度
D、向右平移
π
2
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
x3-f′(-1)•x2+x+5,則f′(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是圓O:x2+y2=1上的兩個(gè)動(dòng)點(diǎn),P是AB線(xiàn)段上的動(dòng)點(diǎn),當(dāng)△AOB的面積最大時(shí),則
AP
2
-
AO
AP
的最小值是( 。
A、-
1
8
B、0
C、-
2
4
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是以2為周期的奇函數(shù)且當(dāng)x∈(0,1)時(shí),f(x)=2x+1,求f(
7
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下結(jié)論:
①函數(shù)y=sin(kπ-x),(k∈Z)為奇函數(shù);
②函數(shù)y=tan(2x+
π
6
)
的圖象關(guān)于點(diǎn)(
π
12
,0)
對(duì)稱(chēng);
③函數(shù)y=cos(2x+
π
3
)
的圖象的一條對(duì)稱(chēng)軸為x=-
2
3
π
;
④函數(shù)y=2sin(x-
π
3
),x∈[0,2π]
的單調(diào)遞減區(qū)間是[
6
,
11π
6
]
;
⑤函數(shù)y=sin2x的周期是kπ(k∈Z).
其中正確結(jié)論的序號(hào)為
 
.(多選、少選、選錯(cuò)均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:x2-x≥6,q:2x>1,已知“p∧q”與“¬q”同時(shí)為假命題.
(1)分別判斷p和q的真假;
(2)求滿(mǎn)足條件的x的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案