下列函數(shù)中,奇函數(shù)是( )
A.y=x2-1
B.y=x3+
C.y=2x
D.y=log3
【答案】分析:選項ABC的定義域關(guān)于原點對稱,而選項D的定義域為(0,+∞)定義域不關(guān)于原點對稱,故函數(shù)f(x)為非奇非偶函數(shù),而選項A滿足f(-x)=f(x)則函數(shù)f(x)為偶函數(shù);選項B滿足f(-x)=-f(x),則函數(shù)f(x)為奇函數(shù);選項C函數(shù)y=2x的圖象既不關(guān)于原點對稱,又不關(guān)于y軸對稱,函數(shù)f(x)為非奇非偶函數(shù),即可得到正確選項.
解答:解:選項A,f(-x)=f(x)則函數(shù)f(x)為偶函數(shù);
選項B,f(-x)=-f(x),則函數(shù)f(x)為奇函數(shù);
選項C,函數(shù)y=2x的圖象既不關(guān)于原點對稱,又不關(guān)于y軸對稱,函數(shù)f(x)為非奇非偶函數(shù);
選項D,定義域為(0,+∞)定義域不關(guān)于原點對稱,故函數(shù)f(x)為非奇非偶函數(shù);
故選B.
點評:判斷一個函數(shù)是否具有奇偶性,先求出定義域,判斷定義域是否關(guān)于原點對稱,若不關(guān)于原點對稱函數(shù)不具有奇偶性;若關(guān)于原點對稱,再驗證f(-x)與f(x)的關(guān)系.