19.已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}-α)}$的值.

分析 先根據(jù)三角函數(shù)的平方關(guān)系商的關(guān)系分別求出cosα,tamα,再用誘導(dǎo)公式化簡(jiǎn)代值計(jì)算即可.

解答 解:∵sinα=$\frac{2\sqrt{5}}{5}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{\sqrt{5}}{5}$,
∴tanα=$\frac{sinα}{cosα}$=±2,
∴tan(α+π)+$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}-α)}$=tanα+$\frac{cosα}{sinα}$=2+$\frac{1}{2}$=$\frac{5}{2}$,
或tan(α+π)+$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}-α)}$=tanα+$\frac{cosα}{sinα}$=-2-$\frac{1}{2}$=-$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的平方關(guān)系商的關(guān)系和誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{9}$,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求函數(shù)y=x+$\frac{1}{2(x-1)^{2}}$(x>1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.(10a+b)12的展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是第( 。╉(xiàng).
A.6B.7C.6或7D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,則集合A最多有15個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(1,$\frac{\sqrt{3}}{2}$),左焦點(diǎn)為F1(-$\sqrt{3}$,0).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn),將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列{an}滿足a1=2,a2=3,an+2=|an+1-an|,則a2016=( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案