【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線的參數(shù)方程為參數(shù))曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),當(dāng)變化時(shí),求的最小值.

【答案】(1)曲線C的直角坐標(biāo)方程為 (2)當(dāng)時(shí), 的最小值為4.

【解析】試題分析】(1)依據(jù)題設(shè)先將直線的參數(shù)方程化為直角坐標(biāo)方程,再運(yùn)用直角坐標(biāo)與極坐標(biāo)的互化公式將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程, 得,

設(shè)A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為, 則, , 然后求出 算得當(dāng)時(shí), 的最小值為4.

解: (1) 由消去,

所以直線的普通方程為.

, 得,

代入上式, 得,

所以曲線C的直角坐標(biāo)方程為.

(2) 將直線l的參數(shù)方程代入, 得,

設(shè)A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,

, ,

所以 .

當(dāng)時(shí), 的最小值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是(
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x+2)為偶函數(shù),若g(x)= ,則a= , g[g(﹣ )]=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線 交橢圓于, 兩不同的點(diǎn).

(1)求橢圓的方程;

(2)若直線不過點(diǎn),求證:直線, 軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡”45歲為分界點(diǎn),由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測(cè)值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn), ,則下面說法正確的是( )

A. B. C. D. 有極小值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)﹣loga(3+ax),請(qǐng)判定g(x)的奇偶性;
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時(shí),f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2 . (Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)= 在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2 在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案