已知函數(shù)是偶函數(shù),是它的導函數(shù),當時,恒成立,且,則不等式的解集為        。

試題分析:令則函數(shù)是奇函數(shù),當時,,因此上單調(diào)減,從而上單調(diào)增,由,解得所求解集為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)是定義在上的奇函數(shù),且.
(1)求函數(shù)的解析式;
(2)證明函數(shù)上是增函數(shù);
(3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),函數(shù).
⑴當時,函數(shù)的圖象與函數(shù)的圖象有公共點,求實數(shù)的最大值;
⑵當時,試判斷函數(shù)的圖象與函數(shù)的圖象的公共點的個數(shù);
⑶函數(shù)的圖象能否恒在函數(shù)的上方?若能,求出的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍;
(3)當時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若當,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2009′(x)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=(2x+1)3-
2a
x
+3a,若f′(-1)=8,則f(-1)=(  )
A.4B.5C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若對任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,則稱函數(shù)f(x)為函數(shù)f1(x)到函數(shù)f2(x)在區(qū)間D上的“折中函數(shù)”.已知函數(shù)f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)ln x,且f(x)是g(x)到h(x)在區(qū)間[1,2e]上的“折中函數(shù)”,則實數(shù)k的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1) 當時,討論的單調(diào)性;
(2)設,當若對任意存在 使求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案