11.某哨所接到位于正西方向、正東方向兩個觀測點的報告,正東方向觀測點聽到炮彈爆炸聲的時間比正西方向觀測點晚4s.己知兩個觀測點到哨所的 距離都是1020m.
(1)爆炸點在怎樣的曲線上,為什么?
(2)已知,哨所正北方向也有一個觀測點,它到哨所的距離也是1020m,哨所接到報告知道,該觀測點與正西方向觀測點同時聽到爆炸聲,試確定爆炸點的位置.
(約定:觀測點均在同一平面上,哨所和觀測點均視為不計大小的點,聲音傳播的速度為340m/s)

分析 (1)利用雙曲線的定義進行判斷;
(2)以接報中心為原點O,正東、正北方向為x軸、y軸正向,建立直角坐標系.設A、B、C分別是西、東、北觀測點,則A(-1020,0),B(1020,0),C(0,1020),P(x,y)為巨響為生點,由雙曲線定義知P點在以A、B為焦點的雙曲線上,依題意能求出雙曲線方程,從而確定該巨響發(fā)生的位置.

解答 解:(1)設P(x,y)為巨響為生點,由A、C同時聽到巨響聲,得|PA|=|PC|,故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點比A點晚4s聽到爆炸聲,故|PB|-|PA|=340×4=1360
由雙曲線定義知P點在以A、B為焦點的雙曲線如圖,
(2)以接報中心為原點O,正東、正北方向為x軸、y軸正向,建立直角坐標系.設A、B、C分別是西、東、北觀測點,則A(-1020,0),B(1020,0),C(0,1020),
依題意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402
故雙曲線方程為$\frac{{x}^{2}}{68{0}^{2}}$-$\frac{{y}^{2}}{5×34{0}^{2}}$=1
用y=-x代入上式,得x=±680$\sqrt{5}$,
∵|PB|>|PA|,
∴x=-680$\sqrt{5}$,y=680$\sqrt{5}$,故PO=680$\sqrt{10}$m
答:巨響發(fā)生在接報中心的西偏北45°距中心680$\sqrt{10}$m處.

點評 本題考查雙曲線的性質和應用,解題時由題設條件作出圖形,數(shù)形結合效果很好.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{{\sqrt{10+9x-{x^2}}}}{lg(x-1)}$,則函數(shù)g(x)=$\frac{{f({2x})}}{x-1}$的定義域為(  )
A.(1,10]B.$(\frac{1}{2},1)∪(1,5]$C.$(\frac{1}{2},5]$D.(1,2)∪(2,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義在R上的奇函數(shù)f(x),當x<0時,f(x)=x2-3x-1,那么x>0時,f(x)=( 。
A.x2-3x-1B.x2+3x-1C.-x2+3x+1D.-x2-3x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知等差數(shù)列{an}中,若a2=-1,a4=-5,則S5=( 。
A.-7B.-13C.-15D.-17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.己知y=f(x)是定義在R上的偶函數(shù),若x≥0時,f(x)=x-1,則x<0時,f(x)=-x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知兩條直線l1:y=a和${l_2}:y=\frac{18}{2a+1}$(其中a>0),l1與函數(shù)y=|log4x|的圖象從左到右相交于點A、B,l2與函數(shù)y=|log4x|的圖象從左到右相交于點C、D,記線段AC和BD在x軸上的投影長度分別為m、n,當a=$\frac{5}{2}$時,$\frac{n}{m}$取得最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù)x,y滿足:$\left\{\begin{array}{l}{2x+y-2≤0}\\{3x-2y+4≥0}\\{x-3y-1≤0}\end{array}\right.$,則3x+9y的最小值為(  )
A.82B.4C.$\frac{2}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.圓(x-1)2+(y-1)2=1與圓x2+y2=2的位置關系為相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知x∈R,則“α=π”是“sin(x+α)=-sinx”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案