【題目】已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集;
(2)當(dāng)時(shí),求方程的解;
(3)若,求實(shí)數(shù)的取值范圍。
【答案】(1) ;(2) x=81或x=;(3) 或
【解析】
(1)不等式等價(jià)于,根據(jù)函數(shù)的單調(diào)性求解;
(2)利用對(duì)數(shù)運(yùn)算將分程進(jìn)行化簡,然后將log3x視作為整體,求出log3x的值,從而解決問題;
(3)根據(jù)函數(shù)單調(diào)性的情況,對(duì)進(jìn)行分情況討論求解實(shí)數(shù)的取值范圍.
解:(1)當(dāng)a=2時(shí),f(x)=log2x,
不等式,
(2)當(dāng)a=3時(shí),f(x)=log3x,
∴f()f(3x)
=(log327﹣log3x)(log33+log3x)
=(3﹣log3x)(1+log3x)=﹣5,
解得:log3x=4或log3x=﹣2,
解得:x=81,x=;
(2)∵f(3a﹣1)>f(a),
①當(dāng)0<a<1時(shí),
函數(shù)單調(diào)遞增,
故0<3a﹣1<a,
解得:<a<,
②當(dāng)a>1時(shí),
函數(shù)單調(diào)遞減,
故3a﹣1>a,
解得:a>1,
綜上可得:<a<或a>1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃金分割起源于公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,公元前世紀(jì),古希臘數(shù)學(xué)家歐多克索斯第一個(gè)系統(tǒng)研究了這一問題,公元前年前后歐幾里得撰寫《幾何原本》時(shí)吸收了歐多克索斯的研究成果,進(jìn)一步系統(tǒng)論述了黃金分割,成為最早的有關(guān)黃金分割的論著.黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,把稱為黃金分割數(shù). 已知雙曲線的實(shí)軸長與焦距的比值恰好是黃金分割數(shù),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)每年暑假舉行“學(xué)科思維講座”活動(dòng),每場講座結(jié)束時(shí),所有聽講者都要填寫一份問卷調(diào)查.2017年暑假某一天五場講座收到的問卷分?jǐn)?shù)情況如下表:
用分層抽樣的方法從這一天的所有問卷中抽取300份進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
(1)估計(jì)這次講座活動(dòng)的總體滿意率;
(2)求聽數(shù)學(xué)講座的甲某的調(diào)查問卷被選中的概率;
(3)若想從調(diào)查問卷被選中且填寫不滿意的人中再隨機(jī)選出5人進(jìn)行家訪,求這5人中選擇的是理綜講座的人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個(gè)內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且圓經(jīng)過點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn)且與圓相交,所得弦長為4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價(jià)40元,兩側(cè)墻砌磚,每米長造價(jià)45元,頂部每平方米造價(jià)20元,求:
(1)倉庫頂部面積的最大允許值是多少?
(2)為使達(dá)到最大,而實(shí)際投資又不超過預(yù)算,那么正面鐵柵應(yīng)設(shè)計(jì)為多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形沿對(duì)角線折成直二面角,
①與平面所成角的大小為
②是等邊三角形
③與所成的角為
④
⑤二面角為
則上面結(jié)論正確的為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn).
(Ⅰ)求證:當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),平面;
(Ⅱ)設(shè),試問:是否存在實(shí)數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個(gè)實(shí)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com