【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn), 和交于兩點(diǎn),求.
【答案】(1) ;(2) .
【解析】試題分析:(1)曲線C的參數(shù)方程為(α為參數(shù)),利用平方關(guān)系可得曲線C的普通方程.由直線l的極坐標(biāo)方程為,展開化為:ρsinθ+ρcosθ=2,利用互化公式可得:直線l的普通方程,利用斜率與傾斜角的關(guān)系即可得出.
(2)顯然點(diǎn)在直線l上.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是為參數(shù)).將直線l的參數(shù)方程代入曲線C的普通方程,得到關(guān)于t的一元二次方程,此方程的兩根為直線l與曲線C的交點(diǎn)A,B對(duì)應(yīng)的參數(shù)tA,tB,利用|PA|+|PB|=|tA|+|tB|即可得出.
試題解析:
(Ⅰ)由消去參數(shù)α,得,
即C的普通方程為.
由,得ρsinθ+ρcosθ=2,…(*)
將代入(*),化簡(jiǎn)得,
所以直線l的傾斜角為.
(Ⅱ)由(Ⅰ)知,點(diǎn)P(0,2)在直線l上,可設(shè)直線l的參數(shù)方程為為參數(shù)),即為參數(shù)),代入并化簡(jiǎn),得.
.
設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,
則,所以t1<0,t2<0,
所以=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,,=4 ,,F為棱AE的中點(diǎn).
(1)求證:平面平面;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)= ﹣1(x∈R)時(shí),得出了下面4個(gè)結(jié)論:①等式f(﹣x)=f(x)在x∈R時(shí)恒成立;②函數(shù)f(x)在x∈R上的值域?yàn)椋ī?,1];③曲線y=f(x)與g(x)=2x﹣2僅有一個(gè)公共點(diǎn);④若f(x)= ﹣1在區(qū)間[a,b](a,b為整數(shù))上的值域是[0,1],則滿足條件的整數(shù)數(shù)對(duì)(a,b)共有5對(duì).其中正確結(jié)論的序號(hào)有(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=loga(3x+1),g(x)=loga(1﹣3x),(a>0且a≠1).
(1)求函數(shù)F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說明理由4;
(3)確定x為何值時(shí),有f(x)﹣g(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定圓,動(dòng)圓過點(diǎn)且與圓相切,記圓心的軌跡為.
(I)求軌跡的方程;
(Ⅱ)若與軸不重合的直線過點(diǎn),且與軌跡交于兩點(diǎn),問:在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,是的中點(diǎn).
(Ⅰ)求證:平面;
(II)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩頂點(diǎn)坐標(biāo)A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=1(從圓外一點(diǎn)到圓的兩條切線段長(zhǎng)相等),動(dòng)點(diǎn)C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點(diǎn)為D,當(dāng)點(diǎn)A在以線段CD為直徑的圓上時(shí),求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com