用20米長的籬笆一邊靠墻圍成矩形,問靠墻一邊的長度為何值時,場地的面積最大,最大面積是多少?
考點:基本不等式在最值問題中的應(yīng)用
專題:計算題,不等式的解法及應(yīng)用
分析:由題意可得:x+2y=l,x>0,y>0.利用基本不等式即可得出xy的最大值.
解答: 解:設(shè)靠墻一邊為xm,相鄰邊ym,x+2y=20,面積S=xy,
20=x+2y≥2
2xy
,∴xy≤50,當(dāng)x=10,S最大值50.
∴靠墻一邊的長度為10米時,場地的面積最大,最大面積是50cm2
點評:本題考查了基本不等式的性質(zhì)和矩形的面積,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和CD,側(cè)棱SD⊥底面ABCD,且SD=AD=AB=2CD,點E為棱SD的中點.求異面直線AE和SB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-4
1-2x
+6的對稱中心是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,
1
tanα
是關(guān)于x的方程3x2-3kx+3k2-13=0的兩實根,且3π<α<3.5π,求cos(3π+α)+sin(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+2
3
sinxcosx-2
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=3,b=
3
,f(A)=1,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
b-2x
2x+1+a
定義域為R,其中a,b為常數(shù).
(1)求a,b的值;
(2)若函數(shù)g(x)=log2(bx2-3x+m)(m∈R)的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在圓C:x2+y2=2x+2y上,則點P到直線l:x+y+1=0的距離最大值為( 。
A、
3
2
2
B、2
2
C、
5
2
2
D、3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-a2x2-ax,1≤x≤e,f′(2)=0,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為[1,2],值域為[3,4],若關(guān)于x的不等式f(x)≥a在[1,2]上有解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案