【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.

【答案】面積的最大值分別為,.其中方案.

【解析】

分別在三角形面積公式中應用基本不等式、余弦定理中利用基本不等式計算出方案和方案面積的最大值,通過最大值的比較可知方案.

方案:設

由已知“用長度為的圍網(wǎng),,兩邊為圍網(wǎng)”得

當且僅當時,等號成立

面積的最大值為

方案:設,

中,由余弦定理得:

(當且僅當時等號成立)

(當且僅當時等號成立)

面積的最大值為

方案

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(.(12分)在一次購物抽獎活動中,假設某10張券中有一等獎獎券1張,可獲價值50元的獎品;有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒獎。某顧客從此10張獎券中任抽2張,求:

1)該顧客中獎的概率;

2)該顧客獲得的獎品總價值X(元)的概率分布列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關(guān)?

(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調(diào)查,記“課外體育不達標”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】n為給定的大于2的整數(shù)。有n個外表上沒有區(qū)別的袋子,第k(k=1,2,···,n)個袋中有k個紅球,n-k個白球。將這些袋子混合后,任選一個袋子,并且從中連續(xù)取出三個球(每次取出不放回)。求第三次取出的為白球的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量與向量的夾角為,且.

(1)求向量

(2)設向量,向量,其中,若,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,Fx軸正半軸上的一個動點.以F為焦點、O為頂點作拋物線C.設P為第一象限內(nèi)拋物線C上的一點,Qx軸負半軸上一點,使得PQ為拋物線C的切線,且.C1、C2均與直線OP切于點P,且均與x軸相切.求點F的坐標,使圓C1C2的面積之和取到最小值,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

同步練習冊答案