4.設x∈R,則“1<x<3”是“|x-2|<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由|x-2|<1,解得1<x<3.即可判斷出結論.

解答 解:由|x-2|<1,解得1<x<3.
∴“1<x<3”是“|x-2|<1”的充要條件.
故選:C.

點評 本題考查了不等式的解法、簡易邏輯,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.某校高二年級在一次數(shù)學測驗后,隨機抽取了部分學生的數(shù)學成績組成一個樣本,得到如下頻率分布直方圖:
(1)求a及這部分學生成績的樣本平均數(shù)$\overline x$(同一組數(shù)據(jù)用該組的中點值作為代表);
(2)若該校高二共有1000名學生,試估計這次測驗中,成績在105分以上的學生人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將函數(shù)y=cos(2x+φ)的圖象向右平移$\frac{π}{3}$個單位,得到的函數(shù)為奇函數(shù),則|φ|的最小值( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某班有60名學生,學號為1~60號,現(xiàn)從中抽取5位同學參加一項活動,用系統(tǒng)抽樣的方法確定的抽樣號碼可能為( 。
A.5,10,15,20,25B.5,12,31,39,57C.6,16,26,36,46D.6,18,30,42,54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,P是雙曲線C的右支上的點,射線PQ平分∠F1PF2交x軸于點Q,過原點O作PQ的平行線交PF1于點M,若|MP|=$\frac{1}{4}$|F1F2|,則C的離心率為( 。
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.曲線f(x)=x2+3x-ex在點(0,f(0))處的切線的方程為( 。
A.y=x-1B.y=x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知點A(-2,0)、B(2,0),P是平面內的一個動點,直線PA與PB的斜率之積是-$\frac{1}{2}$.
(Ⅰ)求曲線C的方程;
(Ⅱ)直線y=k(x-1)與曲線C交于不同的兩點M、N,當△AMN的面積為$\frac{12\sqrt{2}}{5}$時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為3.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為$\frac{2}{3}$,則拋物線C2的方程為( 。
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知命題p:x2+mx+1=0有兩個不等的實根,命題q:4x2+4(m-2)x+1=0無實根,若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案