【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.

【答案】解:(Ⅰ)由a,b,c是一個等比數(shù)列, 得:b2=ac,
∵a2﹣c2=ac﹣bc,
∴bc=b2+c2﹣a2
那么:cosA= = =
∵0<A<π
∴A=
(Ⅱ)∵sinA+sin(B﹣C)=2sin2C,
∴sin(B+C)+sin(B﹣C)=2sin2C,
得:2sinBcosC=4sinCcosC.
即4sinCcosC﹣2sinBcosC=0,
可得:cosC=0或sinB=2sinC.
∵0<C<π
∴C= 或b=2c.
①當(dāng)C= ,由題意,A= ,a= ,
由正弦定理得:
∴c=2.
故由勾股定理得:b=1.
故得△ABC的面積S= absinC= =
②當(dāng)b=2c時,由題意,A= ,a= ,
所以由余弦定理得:那么:cosA=
可得:c=1,b=2.
故得△ABC的面積S= bcsinA= =
綜上①②得:△ABC的面積S=
【解析】(Ⅰ)由a,b,c成等比數(shù)列,可得b2=ac,且a2﹣c2=ac﹣bc,利用余弦定理可得∠A的大。á颍├萌切蝺(nèi)角和定理sinA=sin(B+C),根據(jù)和與差的公式和二倍角公式化簡,利用正余弦定理求解b,c即可求△ABC的面積.
【考點精析】認(rèn)真審題,首先需要了解余弦定理的定義(余弦定理:;;).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)過點 ,且離心率e為
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的左頂點和上頂點分別為A,B,左、右焦點分別是F1 , F2 , 在線段AB上有且僅有一個點P滿足PF1⊥PF2 , 則橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, ,其面積為 ,則tan2Asin2B的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域為{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f1(x),且f1(x)與f(x)不完全相同,則f(x)與f1(x)圖象的公共點必在直線y=x上;
其中真命題的序號是 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+exa , g(x)=ln(x+2)﹣4eax , 其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實數(shù)a的值為(
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)若函數(shù)f(x)的值域為[2,+∞),求實數(shù)a的值
(2)若f(2﹣a)≥f(2),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案