7.已知直線過(guò)點(diǎn)A(-1,2),斜率為2,則此直線的一般式方程式為y-2x-4=0.

分析 利用直線的點(diǎn)斜式即可求得答案.

解答 解:由直線的點(diǎn)斜式得:
過(guò)點(diǎn)A(-1,2),斜率為2的直線的點(diǎn)斜式方程為:y-2=2[x-(-1)],即y-2x-4=0.
故答案為:y-2x-4=0.

點(diǎn)評(píng) 本題考查直線的點(diǎn)斜式方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.3B.4C.4.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一個(gè)長(zhǎng)方體,過(guò)同一個(gè)頂點(diǎn)的三個(gè)面的面積分別是$\sqrt{6}$,$\sqrt{3}$,$\sqrt{2}$,則長(zhǎng)方體的對(duì)角線長(zhǎng)為( 。
A.$2\sqrt{3}$B.$3\sqrt{2}$C.6D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等差數(shù)列{an}前n項(xiàng)和為Sn,若a1+a3=7,a2+a4=11,則S12為( 。
A.150B.155C.160D.165

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某市有甲、乙、丙、丁四個(gè)某種品牌的牛奶代理商,某天早上送貨員小張從工廠出發(fā)依次送貨至各個(gè)代理處,然后再回到工廠,小張的不同的送貨方式共有(  )
A.12種B.16種C.20種D.24種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A=$\frac{π}{6}$,B=$\frac{π}{12}$,a=3,則c的值3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線l1:2x+y+2=0和l2:3x+y+1=0,設(shè)直線l1和l2的交點(diǎn)為P
(1)求過(guò)點(diǎn)P且與直線l3:2x+3y+5=0垂直的直線方程;
(2)直線l過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距之和為-6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{1}{4}$x2-$\frac{1}{2}$x
(1)判斷f(x)是否為定義域上的單調(diào)函數(shù),并說(shuō)明理由
(2)設(shè)x∈(0,e],f(x)-mx≤0恒成立,求m的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平行四邊形ABCD的對(duì)角線分別為AC,BD,且$\overrightarrow{AE}=2\overrightarrow{EC}$,且$\overrightarrow{BF}=3\overrightarrow{FD}$,則(  )
A.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$B.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$C.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$D.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$

查看答案和解析>>

同步練習(xí)冊(cè)答案