2.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R.
(1)當(dāng)a=-2時(shí),求A∪B,A∩B;
(2)若A∩B=B且B≠∅,求實(shí)數(shù)a的取值范圍.

分析 (1)由x2+4x=0,解出可得A={-4,0}.a(chǎn)=-2時(shí),x2+2(a+1)x+a2-1=0化為:x2-2x+3=0,由△<0,可得B=∅.利用集合運(yùn)算性質(zhì)即可得出.
(2)由B≠∅,A∩B=B.可得B={0},{-4},或{0,-4}.分類(lèi)討論即可得出.

解答 解:(1)由x2+4x=0,解得x=0或-4,
∴A={-4,0}.
a=-2時(shí),x2+2(a+1)x+a2-1=0化為:x2-2x+3=0,△=4-12<0,此方程無(wú)解,
∴B=∅.
∴A∪B=A={-4,0},A∩B=∅.
(2)∵B≠∅,A∩B=B.
∴B={0},{-4},或{0,-4}.
若B={0},則a2-1=0,解得a=±1.若a=1,B={x|x2+4x=0}={0,-4},舍去;若a=-1,B={0},滿(mǎn)足條件;
若B={-4},則16-8(a+1)+a2-1=0,解得a=1或7.若a=1,B={x|x2+4x=0}={0,-4},舍去;若a=7,B={-4,-12},滿(mǎn)足條件;
若B={0,-4},由上面可知:a=1滿(mǎn)足條件.
綜上可得:a∈{-1,1,7}.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算性質(zhì)、方程的解法,考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知P是拋物線(xiàn)y2=8x上的一個(gè)動(dòng)點(diǎn),Q是圓(x-3)2+(y-1)2=1上的一個(gè)動(dòng)點(diǎn),N(2,0)是一個(gè)定點(diǎn),則|PQ|+|PN|的最小值為( 。
A.3B.4C.5D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}}$)+1,△ABC中,角A、B、C的對(duì)邊分別是a、b、c.
(Ⅰ)若角A、B、C成等差數(shù)列,求f(B)的值;
(Ⅱ)若f($\frac{B}{2}$-$\frac{π}{6}}$)=$\frac{7}{4}$,邊a、b、c成等比數(shù)列,△ABC的面積S=$\frac{{\sqrt{7}}}{4}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,已知平面α與β交于直線(xiàn)AA1,點(diǎn)B、B1在α內(nèi),點(diǎn)C、C1在β內(nèi),且AC、A1C1、AB、A1B1都垂直于AA1,試問(wèn)∠BAC與∠B1A1C1是否相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知x>0,當(dāng)x取什么值時(shí),4x+$\frac{1}{x}$的值最小?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x+6|+|x-1|≥m恒成立.
(I) 求m 的取值范圍;
(Ⅱ)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x-4|-3x≤2m-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=|10+2log3an|,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知正實(shí)數(shù)x,y滿(mǎn)足x+2y-xy=0,則x+2y的最小值為8y的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若直線(xiàn)ax+(a-2)y+4-a=0把區(qū)域$\left\{{\begin{array}{l}{2x-y+4≥0}\\{3x+y≤9}\\{x+2y≥3}\end{array}}\right.$分成面積相等的兩部分,則$\frac{y}{x+4a}$的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案