已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:=0;
(3)求△F1MF2面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線l所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1、F2分別是橢圓+y2=1的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)該橢圓上的一點(diǎn),且=-,求點(diǎn)P的坐標(biāo);
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,F1,F2是雙曲線=1(a>0,b>0)的兩個(gè)焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,|OF1|為半徑的圓與該雙曲線的左支的兩個(gè)交點(diǎn)分別為A,B,且△F2AB是等邊三角形,則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線y2=4x焦點(diǎn)的直線交拋物線于A,B兩點(diǎn),若|AB|=10,則AB的中點(diǎn)到y軸的距離等于( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線方程為y2=4x,直線l的方程為x-y+5=0,在拋物線上有一動(dòng)點(diǎn)P到y軸的距離為d1,到直線l的距離為d2,則d1+d2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄AP過定點(diǎn)F(0,-),且與直線l相切,橢圓N的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是F,點(diǎn)A(1,)在橢圓N上.
(1)求動(dòng)圓圓心P的軌跡M的方程和橢圓N的方程;
(2)已知與軌跡M在x=-4處的切線平行的直線與橢圓N交于B、C兩點(diǎn),試探求使△ABC面積等于的直線l是否存在?若存在,請求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1、S3、S2成等差數(shù)列,則{an}的公比等于( )
(A)1 (B) (C)- (D)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com