【題目】下列各組對象不能構(gòu)成一個集合的是(
A.不超過20的非負實數(shù)
B.方程x2﹣9=0在實數(shù)范圍內(nèi)的解
C. 的近似值的全體
D.臨川十中2016年在校身高超過170厘米的同學的全體

【答案】C
【解析】解:A、不超過20的非負實數(shù),元素具有確定性、互異性、無序性,能構(gòu)成一個集合.
B、方程x2﹣9=0在實數(shù)范圍內(nèi)的解,元素具有確定性、互異性、無序性,能構(gòu)成一個集合.
C、 的近似值的全體,元素不具有確定性,不能構(gòu)成一個集合.
D、臨川十中2016在校的所有身高超過170厘米的同學,同學身高具有確定性、互異性、無序性,能構(gòu)成一個集合.
故選:C.
【考點精析】本題主要考查了集合的含義的相關(guān)知識點,需要掌握把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個根為1.
(1)求函數(shù)f(x)的解析式;
(2)對任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號分別為的五批疫苗,供全市所轄的三個區(qū)市民注射,每個區(qū)均能從中任選其中一個批號的疫苗接種.

(1)求三個區(qū)注射的疫苗批號中恰好有兩個區(qū)相同的概率;

(2)記三個區(qū)選擇的疫苗批號的中位數(shù)為,求 的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)

1寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;

2為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:實數(shù)x滿足x2-5ax+4a2<0,其中a>0,命題q:實數(shù)x滿足

(1)若a=1,且pq為真,求實數(shù)x的取值范圍;

(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ +x在區(qū)間[m,n]上的最小值是2m,最大值是2n,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四種說法:

①命題“”為假,則、至少一個為假;

②命題“一次函數(shù)都是單調(diào)函數(shù)”的否定是“一次函數(shù)都不是單調(diào)函數(shù)”;

③動點到點 與到點的距離之和為2,則點的軌跡是焦點在軸上的橢圓;

④命題“若直線與雙曲線相切,則該直線與雙曲線只有一個公共點”的逆命題是真命題.

其中正確的有__________.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如下圖:

(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計值;

(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;

(3)為適應(yīng)市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(

按分層抽樣抽取10只,再隨機抽取3只品嘗,記為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

同步練習冊答案