已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問(wèn),是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
(1);(2)存在點(diǎn)使得為定值.
解析試題分析:(1)橢圓的標(biāo)準(zhǔn)方程是,則本題中有,已知三角形的面積為4,說(shuō)明,這樣可以求得;(2)存在性命題的解法都是假設(shè)存在,然后想辦法求出.下面就是想法列出關(guān)于的方程,本題是直線與橢圓相交問(wèn)題,一般方法是設(shè)交點(diǎn)為,把直線方程代入橢圓方程交化簡(jiǎn)為,則有,,而,就可用表示,這個(gè)值為定值,即與無(wú)關(guān),分析此式可得出結(jié)論..
試題解析:(1)設(shè)橢圓的短半軸為,半焦距為,
則,由得,
由解得,則橢圓方程為. (6分)
(2)由得
設(shè)由韋達(dá)定理得:
=
==, (10分)
當(dāng),即時(shí),為定值,所以,存在點(diǎn)使得為定值(14分).
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng)。
(1)求,的方程;
(2)設(shè)與軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線與相交于點(diǎn)A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問(wèn):是否存在直線,使得=?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過(guò)點(diǎn)作直線(不與軸重合)交橢圓于、兩點(diǎn),連結(jié)、分別交直線于、兩點(diǎn),試探究直線、的斜率之積是否為定值,若為定值,請(qǐng)求出;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn)斜率為()的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問(wèn)橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且(為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與、無(wú)關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:,點(diǎn)A、B在拋物線C上.
(1)若直線AB過(guò)點(diǎn)M(2p,0),且=4p,求過(guò)A,B,O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為,且,問(wèn)直線AB是否會(huì)過(guò)某一定點(diǎn)?若是,求出這一定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
巳知橢圓的離心率是.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過(guò)點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線的對(duì)稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的離心率為,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過(guò)點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓G:.過(guò)點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com