某三棱錐的三視圖如圖所示,該三梭錐的體積是(   )
A.B.10C.D.
C
根據(jù)圖示可知該三棱錐的高為4,底面是直角三角形,兩直角邊為5和4,那么利用體積公式可知為V=,故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分).如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC的中點(diǎn),且DE∥BC.
(1)求證:DE∥平面ACD
(2)求證:BC⊥平面PAC;
(3)求AD與平面PAC所成的角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體ABCD—A1B1C1D1的棱長(zhǎng)是1,過(guò)A點(diǎn)作平面A1BD的垂線,垂足為點(diǎn)H,有下列三個(gè)命題:①點(diǎn)H是△A1BD的中心;②AH垂直于平面CB1D1;
③AC1與B1C所成的角是90°,其中正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點(diǎn),過(guò)E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點(diǎn)F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求異面直線AF與BG所成的角的大;
(2)求平面APB與平面CPD所成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正三角形,俯視圖是一個(gè)圓,那么幾何體的側(cè)面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖形狀都相同,大小均等,那么這個(gè)幾何體不可以是(   )
A.球B.三棱錐C.正方體D.圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)四面體的三視圖如圖所示,則這個(gè)四面體的體積為_(kāi)_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)多面體的直觀圖及三視圖如圖所示,則多面體的體積為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)如圖,在三棱柱中,已知
側(cè)面

(Ⅰ)求直線C1B與底面ABC所成角正切值;
(Ⅱ)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說(shuō)明理由).
(Ⅲ)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案