【題目】已知f(x)= (x∈R),若f(x)滿足f(﹣x)=﹣f(x).
(1)求實(shí)數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).
【答案】
(1)解:∵f(x)= (x∈R),若f(x)滿足f(﹣x)=﹣f(x),故函數(shù)f(x)為奇函數(shù),
故有f(0)=0,即 =0,∴a=﹣1,f(x)= =﹣ =﹣1+
(2)證明:在R上任取兩個(gè)數(shù)x1、x2,且x1<x2,
f(x1)﹣f(x2)=(﹣1+ )﹣(﹣1+ )= ,
∵x1<x2,∴0< < ,∴ ﹣ >0, +1>0, +1>0,
∴ >0,∴f(x1)﹣f(x2)>0,即 f(x1)>f(x2),
故函數(shù)f(x)在R上單調(diào)遞減
【解析】(1)由題意可得函數(shù)f(x)為奇函數(shù),故有f(0)=0,求得a=﹣1,可得f(x)的解析式.(2)在R任取兩個(gè)實(shí)數(shù)x1和x2 , 且x1<x2 , 證明f(x1)>f(x2),即可證得f(x)在R上單調(diào)遞減.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過(guò)A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱達(dá)標(biāo))的概率為.經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè). 多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn).混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo).若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個(gè)化驗(yàn);
方案二:平均分成兩組化驗(yàn);
方案三:三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);
方案四:混在一起化驗(yàn).
化驗(yàn)次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若,求個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;
(Ⅱ) 若,現(xiàn)有個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問(wèn):方案一,二,四中哪個(gè)最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間三點(diǎn)A(0,2,3),B(﹣2,1,6),C(1,﹣1,5);求:
(1)求以向量 為一組鄰邊的平行四邊形的面積S;
(2)若向量a分別與向量 垂直,且|a|= ,求向量a的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|2a﹣1≤x≤a+3},集合B={x|x<﹣1或x>5}.
(1)當(dāng)a=﹣2時(shí),求A∩B;
(2)若AB,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)為定義R在的偶函數(shù),當(dāng)0≤x≤2時(shí),y= ;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)在p(3,4),且過(guò)點(diǎn)A(2,3)的拋物線的一部分.
(1)求函數(shù)f(x)的解析式;
(2)在下面的直角坐標(biāo)系中直接畫出函數(shù)f(x)的圖象,寫出函數(shù)f(x)的單調(diào)區(qū)間(無(wú)需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, , , .?dāng)?shù)列的前n項(xiàng)和為,滿足, .
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列能否為等差數(shù)列?若能,求其通項(xiàng)公式;若不能,試說(shuō)明理由;
(3)若數(shù)列是各項(xiàng)均為正整數(shù)的遞增數(shù)列,設(shè),則當(dāng), , 和, , 均成等差數(shù)列時(shí),求正整數(shù), , 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)為對(duì)數(shù)函數(shù),并且它的圖象經(jīng)過(guò)點(diǎn)(2 , ),g(x)=[f(x)]2﹣2bf(x)+3,其中b∈R.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=g(x)在區(qū)間[ ,16]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):R(x)= ,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))
(1)將利潤(rùn)x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com