12.已知函數(shù)y=f(x)(a≤x≤b),集合M={(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=0},則集合M的子集的個(gè)數(shù)為( 。
A.2B.1或0C.1D.1或2

分析 根據(jù)函數(shù)的定義和子集的定義進(jìn)行解答.

解答 解:當(dāng)0∈[a,b]時(shí),由函數(shù)的定義可知,對(duì)于任意的x=0都有唯一的y與之對(duì)應(yīng),
故x=0與函數(shù)y=f(x)只有一個(gè)交點(diǎn),即集合M={ (x,y)|y=f(x),a≤x≤b}∩{ (x,y)|x=0}中含有元素只有一個(gè).
當(dāng)0∉[a,b]時(shí),x=0與函數(shù)y=f(x)沒(méi)有交點(diǎn),
綜上可得,集合M={ (x,y)|y=f(x),a≤x≤b}∩{ (x,y)|x=0}中含有元素的個(gè)數(shù)為0個(gè)或1個(gè),
則集合M的子集的個(gè)數(shù)為1個(gè)或2個(gè).
故選D.

點(diǎn)評(píng) 本題考查了元素與集合的關(guān)系應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.網(wǎng)店為促銷,拿出A,B,C三件商品進(jìn)行搶拍.A,B,C被搶拍成功的概率分別是$\frac{1}{4}$,$\frac{1}{3}$,$\frac{2}{3}$.小明均參與了以上三件商品的搶拍.
(1)求至少有一件商品被小明搶拍成功的概率;
(2)記小明搶拍成功商品的件數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x|x-m|+2x-3(m∈R)在R上為增函數(shù),則m的取值范圍[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.點(diǎn)P(x,y)在直線x+y-4=0上,則2(x2+y2)的最小值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=log3x+x-2的零點(diǎn)所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若復(fù)數(shù)z滿足z(1+i)=1+ai(a∈R),則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(x∈R)
(1)分別計(jì)算f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)由(1)你發(fā)現(xiàn)了什么結(jié)論?并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知半圓(x-1)2+(y-2)2=4(y≥2)與直線y=k(x-1)+5有兩個(gè)不同交點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{5}}{2}$,$\frac{3}{2}$]D.[-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S4=5S2,則$\frac{{{a_3}•{a_8}}}{a_5^2}$的值為±2或-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案