設(shè)函數(shù)f(x)=e2(sinx-cosx),若0≤x≤2013π,則函數(shù)f(x)的各極大值之和為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)求出其單調(diào)區(qū)間,進(jìn)而找到其極大值f(2kπ+π)=e2kπ+π,再利用數(shù)列的求和方法來(lái)求函數(shù)f(x)的各極大值之和即可.
解答: 解:∵函數(shù)f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′=2exsinx,
∵x∈(2kπ,2kπ+π)時(shí),f′(x)>0,x∈(2kπ+π,2kπ+2π)時(shí),f′(x)<0,
∴x∈(2kπ,2kπ+π)時(shí)原函數(shù)遞增,x∈(2kπ+π,2kπ+2π)時(shí),函數(shù)f(x)=ex(sinx-cosx)遞減,
故當(dāng)x=2kπ+π時(shí),f(x)取極大值,
其極大值為f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]
=e2kπ+π×(0-(-1))
=e2kπ+π,
又0≤x≤2013π,
∴函數(shù)f(x)的各極大值之和
S1007=f(π)+f(3π)+…+f(2013π)=eπ+e+e+…+e2013π=
eπ(1-e2014π)
1-e

故答案為
eπ(1-e2014π)
1-e
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及等比數(shù)列的求和.利用導(dǎo)數(shù)求得當(dāng)x=2kπ+π時(shí),f(x)取極大值是解題的關(guān)鍵,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值是教學(xué)中的重點(diǎn)和難點(diǎn),學(xué)生應(yīng)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0).
(1)當(dāng)a=1時(shí),若方程f(x)=t在[-
1
2
,1]
上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(2)求函數(shù)f(x)在定義域上零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(a,-2),
n
=(1,1-a),則“a=2”是“
m
n
”的( 。
A、充要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(1-a20123+2014(1-a2012)=2014,(a3-1)3+2014(a3-1)=2014,則下列結(jié)論正確的是( 。
A、S2014=2014,a2012<a3
B、S2014=2014,a2012>a3
C、S2014=2013,a2012<a3
D、S2014=2013,a2012>a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-1)ln(x-1).
(1)設(shè)函數(shù)g(x)=-a(x-1)+f(x)在區(qū)間[2,e2+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若k∈Z,且f(x)+x-1-k(x-2)>0對(duì)x>2恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x(2x2-2x-1)+3=(x+1)f(x),且f(x)≥m對(duì)一切x∈R恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cos(
π
3
-2x)+2sin2x
(1)若x∈[0,
π
2
],求f(x)的值域;
(2)銳角△ABC中,f(C)=
3
2
,sinB=
1
3
,求cosA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE∥平面PDF;
(2)求二面角E-AB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
cos2a
1
tan
a
2
-tan
a
2

查看答案和解析>>

同步練習(xí)冊(cè)答案