3位男生和3位女生共6位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是
 
種.(用數(shù)字作答)
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:先考慮3位女生中有且只有兩位相鄰的排列,減去在3女生中有且僅有兩位相鄰且男生甲在兩端的排列.
解答: 解:先考慮3位女生中有且只有兩位相鄰的排列
共有C32A22A42A33=432種,
在3女生中有且僅有兩位相鄰且男生甲在兩端的排列有2×C32A22A32A22=144種,
∴不同的排列方法共有432-144=288種
故答案為:288.
點評:本題考查排列組合及簡單的計數(shù)原理,本題解題的關(guān)鍵是在計算時要做到不重不漏,把不合題意的去掉.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點,C為圓x2-4x+y2-1=0的圓心,且圓上有一點M(x,y)滿足
OM
CM
=0,則
y
x
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且a:b:c=
3
:1:2,則∠B為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的偶函數(shù),則f(1+
2
)-f(
1
1-
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x3-2f′(1)x在x=2處的切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題,其中所有正確命題的序號為:
 

(1)“b2=ac”是“實數(shù)a、b、c成等比數(shù)列”的必要而不充分條件;
(2)已知線性回歸方程
y
=3+2x,當(dāng)變量x增加2個單位,其預(yù)報值
y
平均增加4個單位;
(3)函數(shù)f(x)=ex-(
1
2
x在區(qū)間(-1,1)上只有1個零點;
(4)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2=0”;
(5)設(shè)隨機變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),則c等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足iz=2+4i,則在復(fù)平面內(nèi),z的共軛復(fù)數(shù)
.
z
對應(yīng)的點的坐標(biāo)是( 。
A、(2,4)
B、(2,-4)
C、(4,-2)
D、(4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,圓F:(x-1)2+y2=1,過點F作直線l,自上而下順次與上述兩曲線交于點A,B,C,D(如圖所示),則|AB|•|CD|的值正確的是(  )
A、等于1B、最小值是1
C、等于4D、最大值是4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(-2x+
π
3
)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為( 。
A、[
12
11π
12
]
B、[0,
12
]
C、[
π
6
,
3
]
D、[
3
,π]

查看答案和解析>>

同步練習(xí)冊答案