(本小題滿分12分)
已知圓C的圓心為原點(diǎn)O,且與直線x+y+=0相切.
(1)求圓C的方程;
(2)點(diǎn)P在直線x=8上,過P點(diǎn)引圓C的兩條切線PA、PB,切點(diǎn)為A、B,求證:直線AB恒過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為圓心的圓與直線:相切.
(1)求圓的方程;
(2)若圓上有兩點(diǎn)關(guān)于直線對(duì)稱,且,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分).已知圓與直線相切。
(1)求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點(diǎn)A,若直線與橢圓C有兩個(gè)不同的交點(diǎn)E,F,且直線AE的斜率與直線
AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個(gè)定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對(duì)稱,又滿足·=0.
(1)求m的值;
(2)求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知拋物線的準(zhǔn)線與雙曲線交于A,B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若為直角三角形,則雙曲線的離心率是
A. | B. | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn),若點(diǎn)到該拋物線焦點(diǎn)的距離為3,則=( )
A. | B. | C.4 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
、已知圓O:x2+y2=13
(1)證明:點(diǎn)A(-1,5)在圓O外。
(2)如圖所示,經(jīng)過圓O上任P一點(diǎn)作y軸的垂線,垂足為Q,求線段PQ的中點(diǎn)M的軌跡方程。(12分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com