(本小題滿分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實(shí)數(shù)a的范圍。
(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823190322345410.gif" style="vertical-align:middle;" />                           ————1分

 解得:                              ————4分
時(shí),。此時(shí)函數(shù)單調(diào)遞減。
時(shí),。此時(shí)函數(shù)單調(diào)遞增。         ————6分
(2)                           
由題意可知, 時(shí),恒成立。            ————9分

由(1)可知,                     ————11分
可得
                                        ————13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù):
(1)證明:++2=0對(duì)定義域內(nèi)的所有都成立;
(2)當(dāng)的定義域?yàn)閇+,+1]時(shí),求證:的值域?yàn)閇-3,-2];
(3)若,函數(shù)=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) ()(為自然對(duì)數(shù)的底數(shù))
(1)求的極值
(2)對(duì)于數(shù)列,   ()
①  證明:
② 考察關(guān)于正整數(shù)的方程是否有解,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù),,
若函數(shù)在(0,4)上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)求的極值;
(2)若上恒成立,求的取值范圍;
(3)已知,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上的最大值為1,求a的取值范圍(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ln x-1.
(1)求函數(shù)f(x)在區(qū)間[1,e](e為自然對(duì)數(shù)的底)上的最大值和最小值;
(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=x3的圖象的下方
(3)(理)求證:[f′(x)]n-f′(xn)≥2n-2(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)等于
A.6B.2C.0D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊(cè)答案