【題目】已知函數(shù)

1)當(dāng)時,證明函數(shù)在區(qū)間上有三個極值點(diǎn);

2)若對于恒成立,求a的取值范圍.

【答案】1)證明見解析;(2

【解析】

1)求導(dǎo),令,用導(dǎo)數(shù)法得到其單調(diào)性,再結(jié)合零點(diǎn)存在定理得到在區(qū)間有三個零點(diǎn),然后用極值點(diǎn)的定義求解.

2)求導(dǎo),令,則,由(1)知,再分兩種情況討論求解.

1)當(dāng)時,,

.

,

當(dāng)時,,當(dāng)時,,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以.

,故在區(qū)間及區(qū)間內(nèi)各有唯一零點(diǎn).

由此可知,在區(qū)間有三個零點(diǎn):,

當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,

從而知上有三個極值點(diǎn).

2,

,由(1)的證明過程知.

當(dāng)時,即時,有時,;時,有,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以,從而知時,恒有.

當(dāng)時,.

上單調(diào)遞減,故上有唯一零點(diǎn),

從而知上有唯一零點(diǎn),且當(dāng)時,,當(dāng)時,,

所以上單調(diào)遞減,在上單調(diào)遞增,故,

矛盾,舍去.

綜上,所求a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn),,中恰有三個點(diǎn)在橢圓C上,左、右焦點(diǎn)分別為F1、F2

1)求橢圓C的方程;

2)過左焦點(diǎn)F1且不平行坐標(biāo)軸的直線l交橢圓于PQ兩點(diǎn),若PQ的中點(diǎn)為NO為原點(diǎn),直線ON交直線x=﹣3于點(diǎn)M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動點(diǎn), 的中點(diǎn).

(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)已知直線軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的所有棱長均為2,

(Ⅰ)證明:

(Ⅱ)若平面平面,的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個國家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國家或地區(qū)直接宣布封國封城,隨著國外部分活動進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬家)

5.23

4.70

3.72

3.12

2.42

倒閉企業(yè)所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根據(jù)上表,給出兩種回歸模型:

模型①:建立曲線型回歸模型,求得回歸方程為;

模型②:建立線性回歸模型.

1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于的回歸方程;

2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).

回歸模型

模型①

模型②

回歸方程

參考公式:;.

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知6名某疾病病毒密切接觸者中有1名感染病毒,其余5名健康,需要通過化驗(yàn)血液來確定感染者.血液化驗(yàn)結(jié)果呈陽性的即為感染者,呈陰性即為健康.

1)若從這6名密切接觸者中隨機(jī)抽取3名,求抽到感染者的概率;

2)血液化驗(yàn)確定感染者的方法有:逐一化驗(yàn);分組混合化驗(yàn):先將血液分成若干組,對組內(nèi)血液混合化驗(yàn),若化驗(yàn)結(jié)果呈陰性,則該組血液不含病毒;若化驗(yàn)結(jié)果呈陽性,則對該組的備份血液逐一化驗(yàn),直至確定感染者.

i)采取逐一化驗(yàn),求所需檢驗(yàn)次數(shù)的數(shù)學(xué)期望;

ii)采取平均分組混合化驗(yàn)(每組血液份數(shù)相同),依據(jù)所需化驗(yàn)總次數(shù)的期望,選擇合理的平均分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知曲線的極坐標(biāo)方程為,點(diǎn)是曲線的交點(diǎn),點(diǎn)是曲線的交點(diǎn),均異于原點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)利用“五點(diǎn)法”畫出函數(shù)在長度為一個周期的閉區(qū)間的簡圖.

列表:

x

y

作圖:

(2)并說明該函數(shù)圖象可由的圖象經(jīng)過怎么變換得到的.

(3)求函數(shù)圖象的對稱軸方程.

查看答案和解析>>

同步練習(xí)冊答案