【題目】從一堆產(chǎn)品(其中正品與次品數(shù)均多于2件)中任取2件,觀察正品件數(shù)和次品件數(shù),則下列每對(duì)事件中,是對(duì)立事件的是(
A.恰好有1件次品和恰好有兩件次品
B.至少有1件次品和全是次品
C.至少有1件次品和全是正品
D.至少有1件正品和至少有1件次品

【答案】C
【解析】解:∵從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)和次品件數(shù),
∴在A中,恰好有1件次品和恰好有2件次品不能同時(shí)發(fā)生,但能同時(shí)不發(fā)生,
∴恰好有1件次品和恰好有2件次品是互斥事件但不是對(duì)立事件;
在B中,至少有1件次品和全是次品,能同時(shí)發(fā)生,
∴至少有1件次品和全是次品不是互斥事件,故不是對(duì)立事件;
在C中,至少有1件次品和全是正品不能同時(shí)發(fā)生,也不能同時(shí)不發(fā)生,
∴至少有1件次品和全是正品是對(duì)立事件,故C成立;
在D中,至少有1件正品和至少有1件次品能同時(shí)發(fā)生,
∴至少有1件正品和至少有1件次品不是互斥事件,故不是對(duì)立事件;
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的互斥事件與對(duì)立事件,需要了解互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生;而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)f(x)的定義域?yàn)閇t﹣4,t],則t=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3時(shí)取得極值,則a等于(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤(rùn)0.5萬元,未售出的商品,每1噸虧損.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場(chǎng)需求量,T(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤(rùn). (Ⅰ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57萬元的概率;
(Ⅲ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場(chǎng)需求量x的平均數(shù)與中位數(shù)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下三個(gè)命題: ①若“p∧q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>bb﹣1”的否命題為“若a≤b,則2a≤2b﹣1”;
③在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中不正確命題的個(gè)數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=2xf′(1)+x2 , 則f′(0)等于(
A.2
B.0
C.﹣2
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“x<2”是“x2<4”的(
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x≥﹣1},集合B={x|y=lg(x﹣2)},則A∩(UB)=(
A.[﹣1,2)
B.[﹣1,2]
C.[2,+∞)
D.[﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場(chǎng)比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對(duì)一的點(diǎn)球決勝,即雙方各派出一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場(chǎng)的隊(duì)員無需出場(chǎng)罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場(chǎng)),由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中率只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學(xué)沒能出場(chǎng)罰球”,求事件A發(fā)生的概率;
(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對(duì)一點(diǎn)球決勝,一對(duì)一點(diǎn)球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場(chǎng)過的隊(duì)員主罰點(diǎn)球,若在一對(duì)一點(diǎn)球決勝的某一輪中,某隊(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽.若直至雙方場(chǎng)上每名隊(duì)員都已經(jīng)出場(chǎng)罰球,則比賽亦結(jié)束,雙方用過抽簽決定勝負(fù),以隨機(jī)變量X記錄雙方進(jìn)行一對(duì)一點(diǎn)球決勝的輪數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案