15.函數(shù)y=log${\;}_{\frac{1}{2}}$x10,x∈(0,8]的值域是[-30,+∞).

分析 根據(jù)對數(shù)函數(shù)的單調(diào)性求解即可.

解答 解:函數(shù)y=$lo{g}_{\frac{1}{2}}{x}^{10}$=10$lo{g}_{\frac{1}{2}}x$,
∵底數(shù)$\frac{1}{2}$<1,
∴函數(shù)y=$lo{g}_{\frac{1}{2}}x$是單調(diào)減函數(shù),
∵x∈(0,8],
∴函數(shù)y=$lo{g}_{\frac{1}{2}}x$的值域為[-3,+∞],
∴函數(shù)y=log${\;}_{\frac{1}{2}}$x10,x∈(0,8]的值域是[-30,+∞),
故答案為:[-30,+∞).

點評 本題考查了對數(shù)函數(shù)的性質(zhì)的運用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.化簡:
(1)($\frac{2}{3}$)-2+(1-$\sqrt{2}$)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+$\sqrt{(3-π)^{2}}$;
(2)$\frac{5}{6}$a${\;}^{\frac{1}{3}}$b-2•(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,b=asinB,則△ABC一定是( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD中,底面ABCD為平行四邊形,點M,N,Q分別是PA,BD,PD的中點上,
(1)求證:MN∥PC;
(2)求證:平面MNQ∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}的前n項和為Sn=33n-n2
(1)求{an}的通項公式;
(2)問{an}的前多少項和最大;
(3)設(shè)bn=|an|,求數(shù)列{bn}的前n項和Sn′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{1+2i}{1+i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)是( 。
A.($\frac{3}{2}$,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$)C.($\frac{3}{2}$,-$\frac{1}{2}$)D.(-$\frac{3}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(Ⅰ)當(dāng)b>$\frac{1}{2}$時,判斷函數(shù)f(x)在定義域上的單調(diào)性;
(Ⅱ)當(dāng)b≤$\frac{1}{2}$時,求函數(shù)f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C1:ρ=-2cosθ,曲線C2:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)).
(1)化圓C1和曲線C2的方程為普通方程;
(2)過圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l交曲線C2于A,B兩點,求圓心C1到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家在沙灘上用小石子排成多邊形,從而研究“多邊形數(shù)”,如圖甲的三角形數(shù)1,3,6,10,15,…,第n個三角形數(shù)為1+2+3+…+n=$\frac{n(n+1)}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n,又如圖乙的四邊形數(shù)1,4,9,16,25,…,第n個四邊形數(shù)為1+3+5+…+(2n-1)=$\frac{n(1+2n-1)}{2}={n^2}$,以此類推,圖丙的五邊形數(shù)中,第n個五邊形數(shù)為$\frac{3}{2}{n}^{2}-\frac{1}{2}n$.

查看答案和解析>>

同步練習(xí)冊答案