分析 由已知利用同角三角函數(shù)基本關系式可求($\frac{m-3}{m+5}$)2+($\frac{4-2m}{m+5}$)2=1,進而整理即可解得m=8,利用同角三角函數(shù)基本關系式可求tanθ的值.
解答 解:∵sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$(m≠0),
∴($\frac{m-3}{m+5}$)2+($\frac{4-2m}{m+5}$)2=1,整理即可解得:m=8,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{m-3}{4-2m}$=$\frac{8-3}{4-2×8}$=-$\frac{5}{12}$.
故答案為:-$\frac{5}{12}$.
點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (3,9) | C. | (1,3) | D. | (9,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {1,2,3,4} | C. | {1,3} | D. | {1,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com