【題目】已知數(shù)列{an}滿足a1= 且an+1=an﹣an2(n∈N*)
(1)證明:1< ≤2(n∈N*);
(2)設(shè)數(shù)列{an2}的前n項(xiàng)和為Sn , 證明 (n∈N*).
【答案】
(1)證明:由題意可知:an+1﹣an=﹣an2≤0,即an+1≤an,
故an≤ ,1≤ .
由an=(1﹣an﹣1)an﹣1得an=(1﹣an﹣1)(1﹣an﹣2)…(1﹣a1)a1>0.
所以0<an≤ (n∈N*),
又∵a2=a1﹣ = ,∴ = =2,
又∵an﹣an+1= ,∴an>an+1,∴ >1,
∴ = = ≤2,
∴1< ≤2(n∈N*),
綜上所述,1< ≤2(n∈N*)
(2)證明:由已知, =an﹣an+1, =an﹣1﹣an,…, =a1﹣a2,
累加,得Sn= + +…+ =a1﹣an+1,①
由an+1=an﹣an2兩邊同除以an+1an得, 和1≤ ≤2,
得1≤ ≤2,
累加得1+1+…1≤ + ﹣ +…+ ﹣ ≤2+2+…+2,
所以n≤ ﹣ ≤2n,
因此 ≤an+1≤ (n∈N*) ②,
由①②得 ≤ (n∈N*)
【解析】(1)通過(guò)題意易得0<an≤ (n∈N*),利用an﹣an+1= 可得 >1,利用 = = ≤2,即得結(jié)論;(2)通過(guò) =an﹣an+1累加得Sn=a1﹣an+1 , 對(duì)an+1=an﹣an2兩邊同除以an+1an采用累積法可求出an+1的范圍,從而得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題P:方程x2+mx+1=0有兩個(gè)不等的實(shí)數(shù)根,命題q:方程4x2+4(m﹣2)x+1=0無(wú)實(shí)數(shù)根.若p∧q為假,若p∨q為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)圓M與圓(x﹣1)2+y2=1相外切且與y軸相切,則動(dòng)圓M的圓心的軌跡記C,
(1)求軌跡C的方程;
(2)定點(diǎn)A(3,0)到軌跡C上任意一點(diǎn)的距離|MA|的最小值;
(3)經(jīng)過(guò)定點(diǎn)B(﹣2,1)的直線m,試分析直線m與軌跡C的公共點(diǎn)個(gè)數(shù),并指明相應(yīng)的直線m的斜率k是否存在,若存在求k的取值或取值范圍情況[要有解題過(guò)程,沒(méi)解題方程只有結(jié)論的只得結(jié)論分].
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條不重合的直線和兩個(gè)不重合的平面,若,則下列四個(gè)命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),曲線在點(diǎn)處的切線與直線垂直.
(1)試比較與的大小,并說(shuō)明理由;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)f(x)滿足:對(duì)任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(x)=a有兩個(gè)實(shí)數(shù)根x1 , x2 , 且滿足:﹣1<x1<2<x2 , 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ ﹣4,g(x)=kx+3.
(1)當(dāng)a=k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)遞增與單調(diào)遞減區(qū)間;
(2)當(dāng)a∈[3,4]時(shí),函數(shù)f(x)在區(qū)間[1,m]上的最大值為f(m),試求實(shí)數(shù)m的取值范圍;
(3)當(dāng)a∈[1,2]時(shí),若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)對(duì)任意x1 , x2∈[2,4](x1<x2)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南市開展支教活動(dòng),有五名教師被隨機(jī)的分到A、B、C三個(gè)不同的鄉(xiāng)鎮(zhèn)中學(xué),且每個(gè)鄉(xiāng)鎮(zhèn)中學(xué)至少一名教師,
(1)求甲乙兩名教師同時(shí)分到一個(gè)中學(xué)的概率;
(2)求A中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到A中學(xué)的人數(shù),求X的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com