如圖所示,四邊形ADCB是正方形,P是對(duì)角線DB上一點(diǎn),PFCE是矩形,試用向量法證明.

證明:以點(diǎn)D為坐標(biāo)原點(diǎn),DC所在直線為x軸,建立如圖所示的坐標(biāo)系.設(shè)正方形的邊長(zhǎng)為1,||=λ,則A(0,1),P(λ,λ),E(1,λ),F(xiàn)(λ,0).

于是=(λ,1-λ),=(λ-1,λ).

·=(λ)·(λ-1)+(1-λ)(λ)=0,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD是梯形,AD∥BC,則
OA
+
BC
+
AB
=(  )
A、
CD
B、
OC
C、
DA
D、
CO

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=3MB,線段CE上是否存在一點(diǎn)N,使得MN∥平面DAE?若存在,求出CN的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分別是AB,PC的中點(diǎn),
(1)求直線MN和AD所成角;
(2)求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,空間四邊形ABCD中,E、H分別為AB和AD的中點(diǎn),F、G分別是CB、CD上的點(diǎn),且,若BD=6 cm,梯形EFGH的面積為28 cm2,則平行線EH與FG之間的距離為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A-BCD,則在四面體A-BCD中,下列說(shuō)法正確的是(  )

A.平面ABD⊥平面ABC 

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC 

D.平面ADC⊥平面ABD

查看答案和解析>>

同步練習(xí)冊(cè)答案