(本小題滿分12分)
,當時,對應值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

(1).(2)當時,該函數(shù)取得最大值

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的零點是-1和3,當時,,且。(1)求該二次函數(shù)的解析式;(2)求函數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)計算:
(1)0.25×-4÷;
(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在的單調(diào)遞減區(qū)間(—∞,2],求函數(shù)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在在單區(qū)間(—∞,2]上是單調(diào)遞減,求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛. 假設該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.

(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行時間應為多少小時?
(Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分10分
解關于的不等式,且).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,其中是自然常數(shù)).
(Ⅰ)求的單調(diào)性和極小值;
(Ⅱ)求證:上單調(diào)遞增;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某同學利用暑假時間到一家商場勤工儉學,該商場向他提供了三種付款方式:第一種,每天支付38圓;第二種,第一天付4元,第二天付8元,第三天付12元,以此類推:第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你會選擇哪種方式領取報酬呢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
某公司生產(chǎn)一種電了儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):
  ,其中是儀器的月產(chǎn)量。
⑴將利潤表示為月產(chǎn)量的函數(shù)。
⑵當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?(總收益―總成本=利潤)

查看答案和解析>>

同步練習冊答案