【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC是( )
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形

【答案】A
【解析】過點(diǎn)A作AH⊥BD于點(diǎn)H,由平面ABD⊥平面BCD,得AH⊥平面BCD,則AH⊥BC.又DA⊥平面ABC,所以BC⊥AD,所以BC⊥平面ABD,所以BC⊥AB,即△ABC為直角三角形.故選A.由平面ABD⊥平面BCD,且DA⊥平面ABC可以得到BC⊥平面AB,進(jìn)一步有BC⊥AB,則三角形ABC為直角 三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC,已知cos Acos Bsin Asin B,ABC(  )

A. 銳角三角形 B. 直角三角形

C. 鈍角三角形 D. 等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1討論函數(shù)的單調(diào)性;

2時(shí),關(guān)于的方程有唯一解,求的值;

3當(dāng)時(shí),證明: 對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.

(1)將一星期的商品銷售利潤(rùn)表示成的函數(shù);

(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)、、,如果存在實(shí)數(shù)使得,那么稱和諧函數(shù).

(1)已知函數(shù),,試判斷是否為、和諧函數(shù)?并說明理由;

(2)已知為函數(shù),的和諧函數(shù),其中,方程上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓(a>b>0)的左、右焦點(diǎn)為F1、F2,點(diǎn)A在橢圓上,且與x軸垂直.

(1)求橢圓的方程;

(2)過A作直線與橢圓交于另外一點(diǎn)B,求AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.

(1)設(shè)一次訂購量為個(gè),零件的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

(2)當(dāng)銷售商一次訂購500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在髙三的全體名學(xué)生中隨機(jī)抽取名學(xué)生的體檢表,并得到如圖的頻分布直方圖.

(1)若直方中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在以下的人數(shù);

(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在名和名的學(xué)生進(jìn)行了調(diào)查,得到表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否有的把認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

3在(2調(diào)查的名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí),求在這人中任取人,恰好有人的年級(jí)名次在名的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0125萬元和05萬元(如圖)

(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;

(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大利潤(rùn),其最大收

益為多少萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案