【題目】已知橢圓:的左,右焦點(diǎn)分別為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)作一條斜率不為的直線與橢圓相交于兩點(diǎn),記點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)為.證明:直線經(jīng)過軸上一定點(diǎn),并求出定點(diǎn)的坐標(biāo).
【答案】(Ⅰ)(Ⅱ)證明見解析,直線經(jīng)過軸上定點(diǎn),其坐標(biāo)為
【解析】
(Ⅰ)由已知結(jié)合橢圓定義求得,再求得,則橢圓方程可求;(Ⅱ)由題意,設(shè)直線的方程為,再設(shè),,,,則,.聯(lián)立直線方程與橢圓方程,化為關(guān)于的一元二次方程,求出所在直線方程,取求得值,即可證明直線經(jīng)過軸上一定點(diǎn),并求出定點(diǎn)的坐標(biāo).
解:(Ⅰ)由橢圓的定義,可知
.
解得.
又,
橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)由題意,設(shè)直線的方程為.
設(shè),,則.
由,消去,可得.
,.
,.
,
直線的方程為.
令,可得.
..
直線經(jīng)過軸上定點(diǎn),其坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在常數(shù),使得無窮數(shù)列滿足,則稱數(shù)列為“Γ數(shù)列.已知數(shù)列為“Γ數(shù)列”.
(1)若數(shù)列中,,試求的值;
(2)若數(shù)列中,,記數(shù)列的前n項(xiàng)和為,若不等式對(duì)恒成立,求實(shí)數(shù)λ的取值范圍;
(3)若為等比數(shù)列,且首項(xiàng)為b,試寫出所有滿足條件的,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線l過點(diǎn)P(1,1),且傾斜角α=.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sin θ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)直線l與圓C交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在線段的兩端點(diǎn)各置一個(gè)光源,已知光源,的發(fā)光強(qiáng)度之比為,則線段上光照度最小的一點(diǎn)到,的距離之比為______(光學(xué)定律:點(diǎn)的光照度與到光源的距離的平方成反比,與光源的發(fā)光強(qiáng)度成正比)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種作圖工具如圖1所示.是滑槽的中點(diǎn),短桿可繞轉(zhuǎn)動(dòng),長(zhǎng)桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動(dòng),且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)繞轉(zhuǎn)動(dòng)一周(不動(dòng)時(shí),也不動(dòng)),處的筆尖畫出的曲線記為.以為原點(diǎn),所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)動(dòng)直線與兩定直線和分別交于兩點(diǎn).若直線總與曲線有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足:,(其中為非零實(shí)常數(shù)).
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出通項(xiàng)公式;
(2)設(shè),記,求使得不等式成立的最小正整數(shù);
(3)若,對(duì)于任意的正整數(shù),均有,當(dāng)、、依次成等比數(shù)列時(shí),求、、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(0,-1),直線l與C的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點(diǎn),過點(diǎn)P的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積是______ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com