【題目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.
(1)求A∩B;B∪(UA);
(2)已知集合C={x|a≤x≤a+2},若C∩=C,求實數(shù)a的取值范圍.
【答案】(1){x|2<x≤5}; {x|x≤5或x≥9}(2)(-∞,-4)∪(5,+∞)
【解析】
(1)化簡集合A,根據(jù)補集與并集和交集的定義計算即可;(2)根據(jù)題意,利用集合的定義與運算性質(zhì),列不等式組求出a的取值范圍.
(1)集合A={x|x2-11x+18<0}={x|2<x<9},
全集U=R,則UA={x|x≤2或x≥9};
又B={x|-2≤x≤5},則A∩B={x|2<x≤5};
∴B∪(UA)={x|x≤5或x≥9};
(2)集合C={x|a≤x≤a+2},B={x|-2≤x≤5},
則:UB={x|x<-2或x>5},
∵C∩UB=C,
∴CUB,
∴需滿足:a+2<-2或a>5,
解得:a<-4或a>5,
所以實數(shù)a的取值范圍是(-∞,-4)∪(5,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)y=的值的程序框圖如圖所示.
(1)指出程序框圖中的錯誤,并寫出算法;
(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,試判斷函數(shù)的零點個數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用到的數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)滿足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)時,f(x)=log2 ,則y=f(x)在(1,2)內(nèi)是( )
A.單調(diào)增函數(shù),且f(x)<0
B.單調(diào)減函數(shù),且f(x)<0
C.單調(diào)增函數(shù),且f(x)>0
D.單調(diào)增函數(shù),且f(x)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當時,函數(shù)的值域是,求實數(shù)與的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;
(3)若不等式恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點M和N分別是B1C1和BC的中點.
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序數(shù)對,點落在圖中的兩條線段上;該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分數(shù)據(jù)如下表所示,且與滿足一次函數(shù)關(guān)系,
第天 | 4 | 10 | 16 | 22 |
(萬股) | 36 | 30 | 24 | 18 |
那么在這30天中第幾天日交易額最大( )
A. 10 B. 15 C. 20 D. 25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com