分析 立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點(diǎn)?點(diǎn)或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.
解答 解:(1)$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;
(2)$s_1^2+s_2^2+s_3^2={s^2}$.
證明如下:如圖作PO垂直底面△ABC于O點(diǎn),連接AO并延長交BC于D,連接PD,易證AD⊥BC,PD⊥BC,在Rt△PAD中,由射影定理得PD2=OD•AD,
${S^2}_{△PBC}={(\frac{1}{2}BC•PD)^2}=\frac{1}{4}B{C^2}•P{D^2}=\frac{1}{4}B{C^2}•OD•AD$
=$(\frac{1}{2}BC•OD)(\frac{1}{2}BC•AD)={S_{△ABC}}•{S_{△OBC}}$
同理可證:S2△PBA=S△ABC•S△OBA,S2△PCA=S△ABC•S△OCA
所以:S2△PBA+S2△PCA+S2△PBC=S△ABC(•S△OBC+S△OAB+S△OAC)=S2△ABC
即:$s_1^2+s_2^2+s_3^2={s^2}$;猜想成立.
故答案為:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;$s_1^2+s_2^2+s_3^2={s^2}$.
點(diǎn)評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①③ | C. | ①② | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2+b2+c2>ab+bc+ca | B. | a-b+$\frac{1}{a-b}$≥2 | ||
C. | |a-b|+|b-c|≥|a-c| | D. | $\sqrt{a+3}$-$\sqrt{a+1}$≤$\sqrt{a+2}$-$\sqrt{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,5] | B. | (-∞,-1]∪[5,+∞] | C. | [2,5] | D. | (-∞,-1]∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8-2π | B. | 8-$\frac{3}{4}$π | C. | 8-$\frac{2}{3}$π | D. | 8-$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com