【題目】已知函數(shù)在上單調(diào),且函數(shù)的圖象關(guān)于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )
A. 300B. 100C. D.
【答案】D
【解析】
由函數(shù)y=f(x﹣2)的圖象關(guān)于x=1軸對稱,平移可得y=f(x)的圖象關(guān)于x=﹣1對稱,由題意可得a50+a51=﹣2,運用等差數(shù)列的性質(zhì)和求和公式,計算即可得到所求和.
函數(shù)f(x)在(﹣1,+∞)上單調(diào),且函數(shù)y=f(x﹣2)的圖象關(guān)于x=1對稱,
可得y=f(x)的圖象關(guān)于x=﹣1對稱,
由數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),
可得a50+a51=﹣2,又{an}是等差數(shù)列,
所以a1+a100=a50+a51=﹣2,
則{an}的前100項的和為100
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)足球特色學校的發(fā)展狀況,某調(diào)查機構(gòu)得到如下統(tǒng)計數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算y與x的相關(guān)系數(shù)r,并說明y與x的線性相關(guān)性強弱(已知:則認為與線性相關(guān)性很強;,則認為與線性相關(guān)性一般,,則認為y與x線性相關(guān)性較弱)
(2)求y與x的線性回歸方程,并預測該地區(qū)2019年足球特色學校的個數(shù)(精確到個位)
參考公式:
;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價格,已知股票甲的極差是6.88元,標準差為2.04元;股票乙的極差為27.47元,標準差為9.63元,根據(jù)這兩只股票在這一年中的波動程度,給出下列結(jié)論:①股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風險高但可能獲得高回報;③股票甲的走勢相對平穩(wěn),股票乙的股價波動較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點.
(1)求橢圓的方程,并求其離心率;
(2)過點作軸的垂線,設(shè)點為第四象限內(nèi)一點且在橢圓上(點不在直線上),點關(guān)于的對稱點為,直線與交于另一點.設(shè)為原點,判斷直線與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】沙漏是我國古代的一種計時工具,是用兩個完全相同的圓錐頂對頂疊放在一起組成的(如圖).在一個圓錐中裝滿沙子,放在上方,沙子就從頂點處漏到另一個圓錐中,假定沙子漏下來的速度是恒定的.已知一個沙漏中沙子全部從一個圓錐中漏到另一個圓錐中需用時10分鐘.那么經(jīng)過5分鐘后,沙漏上方圓錐中的沙子的高度與下方圓錐中的沙子的高度之比是(假定沙堆的底面是水平的)( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:
未使用新技術(shù)的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術(shù)后的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹.
(1)估計該基地使用了新技術(shù)后,平均1棵臍橙樹的產(chǎn)量;
(2)估計該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?
(3)由于受市場影響,導致使用新技術(shù)后臍橙的售價由原來(未使用新技術(shù)時)的每千克10元降為每千克9元,試估計該基地使用新技術(shù)后臍橙年總收入比原來增加的百分數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對稱中心是唯一的;
②若函數(shù)的圖像關(guān)于直線對稱,則這樣的函數(shù)是不唯一的;
③若,是第一象限角,且,則;
④若是定義在上的奇函數(shù),它的最小正周期是,則.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)證明:當時,函數(shù)在上是單調(diào)函數(shù);
(2)當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com