精英家教網 > 高中數學 > 題目詳情
冪函數f(x)=(m2-2m-2)xm+
12
m2
在(0,+∞)是減函數,則m=
-1
-1
分析:利用冪函數的概念可得到關于m的關系式,解之即可.
解答:解:∵f(x)=(m2-2m-2)xm+
1
2
m2
在(0,+∞)是減函數,
m2-2m-2=1
1
2
m
2
+m<0

∴m=-1.
故答案為:-1.
點評:本題考查冪函數的概念、解析式及其單調性,考查解不等式組的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知冪函數f(x)=x-m2+2m+3(m∈Z)為偶函數且在區(qū)間(0,+∞)上是單調增函數.
(1)求函數f(x)的解析式;
(2)設函數g(x)=2
f(x)
-qx+q-1
,若g(x)>0對任意x∈[-1,1]恒成立,求實數q的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知冪函數f(x)=xm2-2m-3(m∈Z)的圖象與x軸、y軸無公共點且關于y軸對稱.
(1)求m的值;
(2)畫出函數y=f(x)的圖象(圖象上要反映出描點的“痕跡”).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知冪函數f(x)=xm2-4m(m∈Z)的圖象關于y軸對稱,且在區(qū)間(0,+∞)為減函數
(1)求m的值和函數f(x)的解析式
(2)解關于x的不等式f(x+2)<f(1-2x).

查看答案和解析>>

科目:高中數學 來源: 題型:

若冪函數f(x)=(m∈Z)的圖象與坐標軸沒有公共點,且關于y軸對稱,求f(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

若冪函數f(x)=(m∈Z)的圖像與x軸無公共點,則m的取值范圍是(    )

A.{m|-2<m<3,m∈Z}                         B.{m|-2≤m≤3,m∈Z}

C.{m|-3<m<2,m∈Z}                         D.{m|-3≤m≤2,m∈Z}

查看答案和解析>>

同步練習冊答案