如圖,在長(zhǎng)方形ABCD-A1B1C1D1中,E,F(xiàn)分別是棱BC,CC1上的點(diǎn),CF=AB=2CE,AB∶AD∶AA1=1∶2∶4.

(1)求異面直線EF與A1D所成角的余弦值;

(2)證明AF⊥平面A1ED;

(3)求二面角A1-ED-F的平面角的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,E為DC的中點(diǎn),F(xiàn)為線段EC(端點(diǎn)除外)上一動(dòng)點(diǎn),現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD內(nèi)過(guò)點(diǎn)D作DK⊥AB,K為垂足,設(shè)AK=t,則t的取值范圍是
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)n面體有m個(gè)面時(shí)直角三角形,則稱這個(gè)n面體的直度為
mn
,如圖,在長(zhǎng)方形ABCD-A1B1C1D1中,四面體A1-ABC的直度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在長(zhǎng)方形ABCD中,AB=
3
,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使平面AED⊥平面ABC,在平面AED內(nèi)過(guò)點(diǎn)D作DK⊥AE,K為垂足,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方形ABCD中,AB=
3
,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方形ABCD中,AB=4,BC=2.現(xiàn)將△ACD沿AC折起,使平面ABD⊥平面ABC,設(shè)E為AB中點(diǎn),則異面直線AC和DE所成角的余弦值為
5
5
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案