已知函數(shù)f(x)=
sinπx,x≤0
f(x-1),x>0
,那么f(
2
3
)的值為( 。
A、-
1
2
B、-
3
2
C、
1
2
D、
3
2
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件利用分段函數(shù)的性質(zhì)得f(
2
3
)=f(
2
3
-1)=f(-
1
3
)=sin(-
1
3
π
)=-sin
π
3
=-
3
2
解答: 解:∵函數(shù)f(x)=
sinπx,x≤0
f(x-1),x>0
,
∴f(
2
3
)=f(
2
3
-1)=f(-
1
3
)=sin(-
1
3
π
)=-sin
π
3
=-
3
2

故選:B.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=
2x
4x+1

(1)判斷函數(shù)f(x)的奇偶性;
(2)證明f(x)在(0,1)上是減函數(shù);
(3)若方程f(x)=m在(-1,1)上有解,求m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+1+1(a>0且a≠1)的圖象必經(jīng)過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用多種方法在同一坐標(biāo)系中畫出下列函數(shù).
(1)y=sinx,x∈[0,2π]
(2)y=sinx+1,x∈[0,2π]
(3)y=cosx,x∈[-
π
2
,
π
2
]
(4)y=-cosx,x∈[-
π
2
,
2
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
9-x
+
1
x-4
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集A={0,1,2},B={-1,0,1},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象.
(1)y=1+3cosx,x∈[0,2π]
(2)y=2sinx-1,x∈[0,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在橢圓中,a+c=
2
+1,bc=1,a2=b2+c2,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α=-5,則π+
α
2
是第
 
象限角,
π
2
-α是第
 
象限角.

查看答案和解析>>

同步練習(xí)冊答案